Chellaston School

Dr P. Leary (KS5 Coordinator)

REFERENCE IN OTHER RESOURCES

Head Start:Copies in school during week / purchase details provided.Alpha Workbooks:Copies in school during week / purchase details provided.

CONTENTS

Equation of a Line	Pages 3-18
Linear Simultaneous Equations	Pages 19-24
Surds	Pages 25-33
Factorising Quadratics	Pages 34-50
Non-Linear Simultaneous Equations	Pages 51-64
Completing the Square	Pages 65-75
The Quadratic Formula	Pages 76-81
Solving Equations	Pages 82-93
Fractions and Algebraic Fractions	Pages 94-111
Indices	Pages 112-120
Sine Rule, Cosine Rule and Area of a Triangle	Pages 121-138

All material written by Paul Leary.

Chellaston School, 2010.

THE EQUATION OF A LINE

The Equation of a Line

Objectives

find gradients of straight lines

 $\sum_{k=1}^{N}$ by calculation from a pair of coordinates

 \int_{∞}^{∞} from the equation of a straight line graph

know that parallel lines have equal gradients

know the relationship between gradients of perpendicular lines

 \star know and use formulae that give straight line graphs parallel to the axes

 $\sum_{k=1}^{N} x = k$ (vertical line)

 $\sum_{k=1}^{N} y = k$ (horizontal line)

 \star know and use formulae that give diagonal straight line graphs

 $\int_{-\infty}^{\infty} y = mx + c$ (the gradient and intercept form!) $\int_{ax}^{b} ax + by = k$

★ rearrange simple formulae

 \star determine the equation of a straight line graph

REFERENCE IN OTHER RESOURCES

Head Start: Straight Line Graphs - Pages 26-30. Alpha Workbooks: Straight Line Graphs - Pages 7-9.

To avoid errors:

- · write the coordinate with lower or first, how much does it increase by?
- · what amount does y increase / decrease by?

Exercise A: Working out Gradients

The gradient of a line is a measure of the steepness of the line.

Find the **gradients** of the lines shown below:

(1)

(7)

(8)

(2)

(4)

Exercise A: Working out Gradients

The **gradient** of a line is a measure of the **steepness** of the line. Find the **gradients** of the lines joining the points given below, (use the diagram to check afterwards):

The gradient of a line is a measure of the steepness of the line.

Find the gradients of the lines joining the points given below,

(use the diagram to check afterwards):

(13)	(3, -1)	and	(5,9)	(14)	(-4, 10)	and	(1, 0)
(15)	(5, 12)	and	(3, 6)	(16)	(-4, -3)	and	(2, 9)

THE EQUATION OF A LINE (DIAFONAL)

The most useful form of the equation of a <u>straight line</u> graph is the <u>y=moctc</u>. form.

This form directly tells you the gradient of the line and also where it crosses the y-axis (y-intercept).

M, the number with the oc is the GRADIENT !

c is the intercept with the y-axis (y-INTERCEPT)

PARALLEL LINES

Parallel lines have the same gradient!

GETTING INFORMATION FROM THE EQUATION

The gradient and y-intercept can be found providing the equation is in the form M=MOC+C.

If the equation is not in this form, rearrange the equation to make y the subject.

EXAMPLE

Find the gradient and y-intercept of the Rollowing lines:

(a)	y= 2x+1	(b) $y = 3x - 5$	(c) y = 4 − >c
(۵)	y=-6x-7	(e) 2x+y=4	(f) 3x-2y=10

SOLUTION

EQUATION	WORKING	GRADIENT	y-INTERCEPT	
(a) y=2x+1	~	2	1	
(b) y=3x-5	~	3	-5	
(c) y = 4-2c	~	-1	4	
(d) y=-62(-7	~	-6	-7	
(e) 2x+y=4	y= 4-2x	-2	4	
(f) 3x -2y=10	3x = 10 + 2y 3x - 10 = 2y 3x - 5 = y	3 2	-5	
	2			

FINDING THE EQUATION OF A LINE

To find the equation of a line, obtain the gradient and the y-intercept. EXAMPLE

Find the gradient of the line below:

SOLUTION

From graph : gradient =2 y-intercept =-3 + y= 2x-3

FINDING THE EQUATION OF A LINE

To find the <u>equation</u> of a <u>line</u>, obtain the <u>gradient</u> and <u>y-intercept</u>.

EXAMPLE

Find the equation of a line with a gradient of 3 and a y-intercept of 5, through (0,5).

SOLUTION

y= 3x+5

EXAMPLE

Find the equation of a line which passes through the points

SOLUTION

Find the gradient first :

(),-6) to (, 9) change in x = +3(-1, (3) to (2, (3)) change in y=+15 gradient = $\frac{+15}{+3}$ = 5

$$30 \quad y = 5x + c \quad 0$$

Now put either coordinate into () 9 = 5×2+c Use (2,9) c = -1 : y= 50c-1

Exercise B: The Equation of a Straight Line

The equation of a straight line graphs is y = mx + c.

The value of *m* is the gradient.

The value of *c* is the *y*-intercept.

[Note: the form must have *y* as the subject *i.e.* y = ...]

EQUATION	GRADIENT	y-INTERCEPT
y = 3x + 7		
	4	-2
y = 10x - 5		
y = 4 - 2x		
y = 3x		

(1) Complete the table to fill in the missing entries for: the **equation**, **gradient** and *y*-intercept.

(2) Complete the table to fill in the missing entries for: the **equation**, **gradient** and *y*-intercept.

EQUATION	WORKING	GRADIENT	y-INTERCEPT
x + y = 5			
x + 2y = 8			
3x - 2y = 4			
5x - 8y = 3			
6x + 2y - 15 = 0			

Exercise B: The Equation of a Straight Line

The equation of a straight line graphs is y = mx + c.

The value of *m* is the **gradient**.

The value of *c* is the *y*-intercept.

[Note: the form must have *y* as the subject *i.e.* y = ...]

For the two **lines** in each question:

Determine their gradients,

State the *y*-intercepts,

Write the **equation** of each **line**.

Exercise B: The Equation of a Straight Line

The equation of a straight line graphs is y = mx + c.

The value of *m* is the gradient.

The value of *c* is the *y*-intercept.

[Note: the form must have *y* as the subject *i.e.* y = ...]

Find the equation of the missing line given the equation of the parallel line.

Find the equation of the line with the given gradient through the given point.

- (11) gradient 2 passing through (0, 5)
- (12) gradient 5 passing through (0, -3)
- (13) gradient 1 passing through (0, 2)
- (14) gradient -4 passing through (0, 7)

Exercise B: The Equation of a Straight Line

The equation of a straight line graphs is y = mx + c.

The value of *m* is the gradient.

The value of *c* is the *y*-intercept.

[Note: the form must have *y* as the subject *i.e.* y = ...]

Find the equation of the line with the given gradient through the given point.

- (15) gradient 3 passing through (1, 7)
- (16) gradient -2 passing through (5, 3)

Find the equation of the line that passes through the given points.

- (17) (3, 4) and (5, 8)
- (18) (-2, 1) and (3, 6)
- (19) (-2, 12) and (1, 3)
- (20) (2, 5) and (10, 9)

Parallel lines have the same gradient.

For each line in the question below, determine its gradient and find the pairs of lines that are parallel.

$$(21) \quad y = 3 - 2x$$
$$y = 3 - x$$
$$2x + y = 10$$
$$3x - 2y = 7$$
$$y = 1.5x + 6$$
$$x + y = 6$$

Exercise C: Investigating Perpendicular Lines

Look at the gradients of these lines and the perpendicular lines.

Verify to yourself that the **gradients** are correct and write down the **relationship** between the **gradient** of a **line** and is **perpendicular**.

P. Lea

Exercise D: Perpendicular Lines

To find a **perpendicular** to a **gradient**:

- find the reciprocal of the gradient
- change the **sign**

The reciprocal of **b** is $\frac{1}{b}$; the reciprocal of $\frac{a}{b}$ is $\frac{b}{a}$.

	GRADIENT	PERPENDICULAR
(1)	5	
(2)	8	
(3)	-4	
(4)	$\frac{1}{3}$	
(5)	$-\frac{1}{2}$	
(6)	$\frac{5}{2}$	
(7)	$\frac{3}{10}$	
(8)	$-\frac{5}{4}$	

Complete the table to give the **perpendicular gradients**:

Identify whether these lines are **parallel**, **perpendicular** or **neither**.

(9)	y = -2x	(10)	y = 5 - 3x
	$y = \frac{1}{2}x + 1$		3x + y = 7
(11)	y = 10 - 4x	(12)	y = 4x + 1
	4x - y = 12		$y = \frac{1}{4}x - 3$
(13)	y = 2x + 1	(14)	3x + 2y = 4
	y = -2x - 3		2x - 3y = 4

Lines Parallel to Axes

Exercise E: Lines Parallel to Axes

In each question write the equations for the three lines given:

TH	HE EQUATIO	on of	ALIN	JE EXE	RCUSE A	
1	gradient=1		2 gra	dient=5	3 gradie	t = -3
Ð	gradient =	12	(5) gra	dient = -2	6 gradien	$t = \frac{2}{3}$
Ŧ	gradient = 6	,	(8) gra	$dient = \frac{2}{5}$		
9	change in y→	+3 +9	(10) chan chang	ge in ><→+8 ge in y→ -8	(1) change in change in)<→+2 \ y→+18
	gradient = $\frac{+9}{+3}$	- 3	gradia	$xt = \frac{-8}{+8} = -1$	gradient =	$\frac{+10}{+2} = 5$
(12)	change in sc -	+6	(3) gra	dient = $\frac{+10}{+2} = 5$	(14) gractier	$t = \frac{-10}{+5} = -2$
	gradient = $\frac{-3}{+6}$		(j) grad	dient = $\frac{+6}{+2}$ = 3	(6) gradier	$t = \frac{+12}{+6} = 2$
TH	IE EQUATION	of A	LINE	EXE	MCISE B	
•	EQUATION GA	ADIENT	y-1~T.	2 EQUATION	- work	GRAD. YWT
	Y = 3x+7	3	7	x+y= 5	y=5-2C	-1 5
	y=4x-2	4	-2	x+2y=8	2y=8-x v=4-==x	-12 4
	y= 10x-5	10	-5	34-7-24	$7_{x} = 4_{x} + 7_{y}$	3 -7
	y=4-2x -	.2	4	JC 23- T	3x-4=2y	2
	y = 37C	3	0		5 x - 2 = y	
	•			5x-8y=3	52c = 3+8y 5x-3 = 8y	5-3-8
					5x-3=7	
				6x+2y-15=0	2y = 15-6x y = 15-3x	$-3 \frac{15}{2}$
3	(g) y=2x+	-3 (b) y	j=-3x+8	(4) (5) y= 42	x-7 (b)y=-	-x+3
3	(a) y=3x	(b) y	$=\frac{1}{2}x+7$	(a) $y = \frac{3}{2}x$	+1 (b) y=-	376-8

THE EQUATION OF A LINE	EXERCISE B
€ y=2x-2	(8) y=>c+4
g y=10-32c	1) y= 2x-5
(ii) $y = 2x + 5$	(i) y= 5x-3
(1) y= x+2	(14) y= -4x+7
(15) $y = 3x + c$	(1) y = -2x + c
USE (1,7)	use (5,3)
$7 = 3 \times 1 + c$ 7 = 3 + c 4 = c	$3 = -2 \times 5 + C$ 3 = -10 + C 13 = C
y = 3x + 4	y = -2x + 13
$(i) M = \frac{4}{2} = 2$	$(18) M = \frac{5}{5} = 1$
y = 2c + c	y = x + c
US e (3,4)	use (3,6)
$4 = 2 \times 3 + c$ 4 = 6 + c -2 = c	6 = 3 + c 3 = c
y = 2x-2	y = x + 3
(19) $M = -\frac{9}{3} = -3$	$(20) M = \frac{4}{8} = \frac{1}{2}$
y = -3x + c	y====x+c
use (1,3)	use (2,5)
$3 = -3 \times 1 + c$ 3 = -3 + c 6 = c	$5^{2} \frac{1}{2}(2) + C$ $5^{2} + C$ $4^{2} + C$ $4^{2} + C$
y = -3x + 6	y= 1x+4

THE EQUATION	JOFF	H LINE EXERCI	SEB
E) y=3-2,2	-	y = -2x + 3	M=-2
y= 3->c	~>	y=->c+3	M =-1
2x+y=10	->	y=-2x+10	m=-2
3x-2y=7		3x-7=2y えx-テーチ	M=3 (1.5)
y= 1.5>c+6		y= 1.5x+6	m=1.5 (3)
x+y=6	>	y = -x + 6	M=-)
Parallel pairs	are	y=3-2,2 cord 2,2+	y=10
		y=3->c and >c+	y=6
		3x - 2y = 7 and y=1	1-5>1+6

THE EQUATION OF A LINE <u>EXERCISE</u> C To obtain the perpendicular gradient.... • TAKE THE RECIPROCAL OF THE GRADIENT

· CHANGE THE SIGN

THE	EQUATION	OFA	LINE	EXENCISE D
(1)	$-\frac{1}{5}$ (2)	- 18	3	; (4) -3
5	26	-2-5-	P -	
9	PERPENDICULAR $M_1 = -2$ $M_2 = \frac{1}{2}$		ସ	PARALLEL $M_1 = -3$ $M_2 = -3$
(h)	NEITHER Mi=-4 Mi=4		(r)	NEITHER $M_1 = 4$ $M_2 = \frac{1}{4}$
(13)	NETTIEL		(14)	PERPENDICULAR

 $M_1 = 2$ $M_2 = -2$

$$M_{1} = 4$$

$$M_{2} = 4$$

$$M_{2} = 4$$

$$PERPENDICULAN
$$M_{1} = -3/2$$

$$M_{2} = -3/2$$$$

EXERCISE E THE EQUATION OF A LINE D (a) y=4 (2) (G) X=1 (b) x = 4(b) y=2 (c) $\chi = -5$ (c) y=-1

SIMULTANEOUS EQUATIONS

Linear Simultaneous Equations

Objectives

know basic algebraic skills

recognise formulae that give straight line graphs

$$\frac{1}{\sqrt{2}} y = mx + c$$
$$\frac{1}{\sqrt{2}} ax + by = k$$

★ appreciate that when you solve linear simultaneous equations, you find where the lines cross

solve linear simultaneous equations algebraically by elimination X

***** solve linear simultaneous equations algebraically by substitution

 \star identify the best method to use (substitution or elimination)

REFERENCE IN OTHER RESOURCES

Head Start: Linear Simultaneous Equations - Pages 23-25. Simultaneous Equations - Pages 17-19. Alpha Workbooks:

Simultaneous Equations - Linear Simultaneous Equations

LINEAR SIMULTANEOUS EQUATIONS

A linear formula is one which gives rise to a straight line graph.

Linear formulas contain both se and y (no power).

<u>Algebraic manipulation</u> can be used to manipulate between two key <u>forms</u>

• y = M + c • ax + by = k

Some equivalent formulas are presented in the table below:

$$Ey = mac + c$$

$$y = mac + c$$

$$y = x - 2$$

$$y = -2x + 6$$

$$y = \frac{3}{2}x - 6$$

$$x - y = 2$$

$$y = -2x + 6$$

$$y = \frac{3}{2}x - 6$$

When you <u>solve linear simultaneous equations</u> you are finding the <u>crossing point</u> of the straight line graphs.

EXAMPLE

Solve 2x+3y=6 () x-y=8 (2)

by elimination.

SOLUTION

2x + 3y = 60x - y = 80

(2)
$$\times 3$$

 $3x - 3y = 24$ (2) Difference
 $2x + 3y = 6$ (2) Signary
(3) + (1)
 $5x = 30$
 $x = 6$
in (2)
 $12 + 3y = 6$
 $3y = -6$
 $y = -2$

Solve 2x+3y=6 () y=x-8 ()

by substitution

SOLUTION

2x + 3y = 6 0y = x - 8 2SUBSTITUTE 2 in 0<math display="block">2x + 3(x - 8) = 62x + 3x - 24 = 65x - 24 = 65x - 24 = 65x = 30x = 6

in @ y= 6-8 =-2

v

LINEAR SMULTANEOUS EQUATIONS

There are several ways of solving linear simultaneous equations.

EGRAPH)

Draw both graphs and look for the point of intersection.

This is a GCSE approach! An algebraic approach will be required at A-level.

These are:

(ELIMINATION)

This is the main method you will have met before.

Use if <u>both</u> equations are in the form <u>ax+by=k</u> (x's and y's on <u>same side</u>).

You must make 'amount of y' the same.

Then eliminate using . same signs subtract . different signs add

* or 'amount of sc' the same.

(SUBSTITUTION)

Use if <u>one</u> or <u>both</u> equations are in the form y = M2C+C. Put the y = equation into the other one-

(NOTE)

You can choose either algebraic method by <u>rearranging Pornula</u>.

EXAMPLE

Solve 3x+2y=10 (a) 2x+y=6 (b) by elimination. SOLUTION

3x+2y = 10 0 2x+y = 6 0 2x + 2y = 12 3 4x+2y = 12 3 3x + 2y = 10 0560x5

3 - 0x = 2

4 + y = 0 y = 2

EXAMPLE

Solve 3x+2y=10 0 y=6-2,c 0

by substitution.

SOLUTION

3x+2y=100 y=6-2x0

SUBSTITUTE (2) in (1) 3x + 2(6 - 2x) = 10

$$3x + 12 - 4x = 10$$

 $12 - x = 10$
 $12 = 10 + 70$
 $7 = x$

 $y = 6 - 2 \times 2$ y = 2

Simultaneous Equations - Linear Simultaneous Equations

Exercise: Solving Linear Simultaneous Equations

When solving **linear simultaneous equations** you are finding the **point of intersection** of two **straight line graphs**.

There are two algebraic methods of solving them: elimination and substitution.

Try to recognise which method is easier, it depends on which form the equations are given in - the following questions break down the two methods.

Solve these linear simultaneous equations by the elimination method.

This is suitable as both equations are in the form ax + by = k.

(1)	3x + y = 3 $x + 2y = -4$	(2)	3x + 4y = 24 $x + y = 7$
(3)	3x - 2y = 12 $2x + y = 1$	(4)	2x - y = 4 $3x - y = 5$
(5)	2x - 3y = 6 $3x - 2y = 14$	(6)	5x + 2y = 54 $2x - 5y = 10$

Solve these linear simultaneous equations by the substitution method.

This is suitable as at least one of the equations are in the form y = mx + c.

(7)	2x + y = 10	(8)	4x + 5y = 5
	y = x - 2		y = 2x - 6
(9)	3x + 2y = 12	(10)	y = 3x - 5
	y = x + 11		y = 2x - 2

Either method can actually be used however the questions are presented – all you would need to do is **change the subject of the formula** to change between the methods (you can do this if you prefer one method but is may involve a lot more work and could make things quite difficult).

(1) $3x + y = 3$ (1) x + 2y = -4 (2)	(2) $3x + 4y = 24$ (0) x + y = 7 (2)
$ \begin{array}{l} (1) \times 2 \\ 6 \times + 2 \ y = 6 \\ x + 2 \ y = -4 \\ (2) \\ (3) - ($	(2) x 4 4) x 4 y = 28 (2) SAME 3) x 4 y = 24 (1) SIGNS SUBTRACT (3) - 0 x = 4 in (2) 4 + y = 7 y = 3
(3) $3x - 2y = 12$ (3) 2x + y = 1 (2)	(4) Zoc -y = 4 (1) SAME 3x-y = 5 (2) SIGNS SUBTRAD
(2) $\times 2$ 4x + 2y = 2 (3) DIFFERENT 3x - 2y = 12 (1) SIGNS ADD (3) + (1) 7x = 14 x = 2 in (1)	(2) - (1) x = 1 iv (1) 2 - y = 4 2 = y + 4 -2 = y
4 + y = 1 y = -3	

REMEMBER

Before you eliminate make the 'amount of y' the same.

- (c) 2x 3y = 60 3x - 2y = 140(c) x^{2} 4x - 6y = 123) SAME (c) x^{3} 9x - 6y = 420 SIGNS SUBTRACT (c) -3 x = 6in (1) 12 - 3y = 6 3y = 6y = 2
- (f) 2x + y = 100 y = 2x - 2 (f) SUBSTITUTE (f) IN (f) 2x + (2x - 2) = 10 3x - 2 = 10 3x = 12 x = 4in (f) y = 4 - 2y = 2
- () 5x + 2y = 54 () 2x 5y = 10 (2) () x 5 25 x + 10 y = 270 (3) DIFFERENT (2) x 2 4x - 10 y = 20 (2) SIGNS AON 3 + 4 29x = 290 $\chi = 10$ in (1) 50 + 2y = 54 2y = 4 y = 2 (8) 4x + 5y = 5 (1) y = 2x - 6 (2) SUBSTITUTE @ IN () 4x + 5(2x - 6) = 54x + 10x - 30 = 514x - 30 = 514x = 35 $x = \frac{35}{14} = 2.5$

in
$$(2)$$

 $y = 2x2.5 - 6$
 $y = 5 - 6$
 $y = -1$

(1)
$$3x + 2y = 12$$
 (1)
 $y = x + 11$ (2)
 $y = 2x - 2$ (2)
SUBSTITUTE (2) IN (1)
 $3y + 2x + 12 = 12$
 $3x + 2x + 22 = 12$
 $5x + 22 = 12$
 $5x = -10$
 $x = -2$
in (1)
 $y = 3x - 5 = -2$
 $5x = -2$
 $5x = -2$
in (1)
 $y = 3x - 5$
 $y = 4$
 $y = -2 + 11$
 $y = 9$

SURDS

Surds

Objectives

★ recognise surds

 \star know the surd laws: multiplication and division only

★ simplify surds

 \star rationalise the denominator is fractions containing surds

 \star use brackets and algebraic techniques in solving mixed problems with surds

REFERENCE IN OTHER RESOURCES

Head Start:Types of Number - Pages 1-2 (Surd Rules Not Covered).Alpha Workbooks:Types of Number - Page 3 (Surd Rules Not Covered).

P. Lear

T	IPES	OF	NUMBER

TYPES OF NUMBER	BASIC SIMPLIFYING AND USE OF LAWS
INTEGERS - are whole numbers	EXAMPLE
RATIONAL NUMBERS - are numbers that can be expressed exactly as a fraction e.g. $0.7 = \frac{7}{10}$, $0.25 = \frac{1}{4}$, $0.17 = \frac{13}{100}$	Simplify J3 × J3 you should be able to care up SOLUTION with this assuer directly without the rule (squaring
$0.\dot{i} = \frac{2}{3}, 0.\dot{105} = \frac{35}{333}$ IRRATIONAL NUMBERS - are <u>numbers</u> that cannot be expressed exactly as a <u>fraction</u> e.g. $\sqrt{2}$, $\sqrt{11}$, $\sqrt[3]{5}$, $\sqrt{11}$	$\frac{\text{EXAMPLE}}{\text{Simplify}} = 2\sqrt{3} \times 5\sqrt{3}$ $\frac{\text{Solution}}{2\sqrt{3} \times 5\sqrt{3}} = 10 \times 3 = 30$
IRRATIONAL NUMBERS include: • <u>square roots</u> of numbers that are not square numbers • <u>cube roots</u> of numbers that are not cube numbers	$\frac{E \times AMPLE}{Calculate} = (2\sqrt{2})^{2}$ $\frac{SOLUTION}{(2\sqrt{2})^{2}} = 2\sqrt{2} \times 2\sqrt{2} = (2 \times 2) \times (\sqrt{2} \times \sqrt{2}) = 4 \times 7 = 28$
ROSTS that give rise to incrational numbers are called surps. SURO RULES The <u>surd rules</u> allow you to rewrite <u>surds</u> which are <u>multiplied</u> or <u>divided</u> . MULTIPLICATION RULE $\overline{Ja} \times \overline{Jb} = \overline{Ja \times b}$ Division RULE $\overline{Jb} = \overline{Ja}$	EXAMPLE Evaluate $\sqrt{21} \times \sqrt{50}$ Solution $\sqrt{2} \times \sqrt{50} = \sqrt{2 \times 50} = \sqrt{100} = 10$ EXAMPLE Write as a single surd $\sqrt{5} \times \sqrt{7}$ Solution
The sume them do not work for addition and su straction,	√51×√7' = √5 ×7' = √35'
SIMPLIFYING SURDS When simplifying a single surd: • Square roots - look for factors that are square numbers • <u>cube roots</u> - look for factors that are <u>cube numbers</u> <u>EXAMPLE</u> Simplify J12 <u>SOLUTION</u> J12 = JOX3 = J47J37 = 2J37	$\frac{\sqrt{5} \times \sqrt{7}^{2} : \sqrt{5} \times 7^{2} : \sqrt{35}}{\frac{RATIONALISING THE DENOMMATOR}{Rationalising the denominator means re-writinga fraction so the bottom number does notcontain a sural.Use laws of equivalent fractions to do this.ExampleRationalise the denominator \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
Simplify $G = SUADS$ When <u>simplifying</u> a <u>single surch</u> : • <u>square roots</u> - look for <u>factors</u> that are <u>square numbers</u> • <u>cube roots</u> - look for <u>factors</u> that are <u>cube numbers</u> <u>EXAMPLE</u> Simplify $J12$ <u>Solution</u> $J12 = J \oplus x3^{-} = J4^{-}J3^{-} = 2J3^{-}$ <u>EXAMPLE</u> Simplify $J45^{-}$ <u>Solution</u> $J45^{-} = J \oplus x5^{-} = J9^{-}J5^{-} = 3J5^{-}$ When <u>simplifying</u> two surch which are <u>added</u> subtracted, <u>Simplify</u> each <u>surch</u> first then <u>collect like terms</u> (<u>surch</u>). <u>ExAMPLE</u> Simplify $J12 + J75^{-}$ Solution	$\frac{1}{\sqrt{2}} \times \sqrt{2}^{2} : \sqrt{3} \times \sqrt{2}^{2} : \sqrt{35}^{2}$ $\frac{RATIONALISING THE DENOMINATION}{Rationalising the denominator means rewriting a fraction so the bottom number does not contain a sured. Use laws of equivalent fractions to do this. EXAMPLE Rationalise the denominator \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} \times \sqrt{2} = \frac{\sqrt{2}}{2}EXAMPLERationalise the denominator \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} \times \sqrt{2} = \frac{\sqrt{2}}{2}EXAMPLERationalise the denominator \frac{2\sqrt{3}}{\sqrt{5}}Solution\frac{2\sqrt{3}^{2}}{\sqrt{5}} = \frac{2\sqrt{3}}{\sqrt{5}} \times \frac{\sqrt{5}^{2}}{\sqrt{5}} = \frac{2\sqrt{3}\sqrt{5}}{5} = 2\sqrt{15}^{2}EXAMPLERationalise the denominator \frac{\sqrt{2}+1}{\sqrt{2}}Solution$

Exercise A: Basic Surds and Use of Laws in Simplifying

A rational number is a number that can be written as a fraction.

An irrational number is one which cannot be expressed exactly as a fraction.

An expression involving an **irrational number** is called a **surd**.

The surd rules allow you to re-write surds which are multiplied or divided.

The same ideas **do not** work for **addition** and **subtraction**.

Exercise 1

Work these out; the answer will be an integer!

(1)	$\sqrt{2} \times \sqrt{2}$	(2)	$\sqrt{5} \times \sqrt{5}$	(3)	$\sqrt{11} \times \sqrt{11}$	(4)	$\left(\sqrt{8}\right)^2$
							/ \

(5) $2\sqrt{3} \times \sqrt{3}$ (6) $\sqrt{6} \times 4\sqrt{6}$ (7) $3\sqrt{7} \times 2\sqrt{7}$ (8) $(2\sqrt{5})^2$

Use the **multiplication law** to write these as a **single surd** and **simplify** to a **rational number**, in most cases the result will be an **integer**.

- (9) $\sqrt{5} \times \sqrt{20}$ (10) $\sqrt{2} \times \sqrt{8}$ (11) $\sqrt{27} \times \sqrt{3}$ (12) $\sqrt{50} \times \sqrt{2}$
- (13) $\sqrt{12} \times \sqrt{3}$ (14) $\sqrt{2} \times \sqrt{32}$ (15) $\frac{\sqrt{75}}{\sqrt{3}}$ (16) $\frac{\sqrt{72}}{\sqrt{2}}$

Use the multiplication law to write these as a single surd (the result is irrational).

(17) $\sqrt{3} \times \sqrt{5}$ (18) $\sqrt{7} \times \sqrt{2}$ (19) $\sqrt{6} \times \sqrt{3}$ (20) $\sqrt{5} \times \sqrt{6}$

Exercise B: Simplifying Surds

When **simplifying** a **single surd** you need to make the number inside the **root** as **small** as possible.

For square roots look for factors that are square numbers and break the surd apart and then simplify.

When you are asked to **simplify two surds** that are added or subtracted, **simplify** each **surd** first and you should obtain **like terms** (**surds**) which can be **collected**.

Exercise 2

Simplify these surds (the result is irrational).

(1)	$\sqrt{8}$	(2)	$\sqrt{75}$	(3)	$\sqrt{18}$	(4)	$\sqrt{50}$
(5)	$\sqrt{28}$	(6)	$\sqrt{490}$	(7)	$\sqrt{125}$	(8)	$\sqrt{63}$
(9)	$\sqrt{40}$	(10)	$\sqrt{600}$	(11)	$\sqrt{98}$	(12)	$\sqrt{405}$
(13)	$\sqrt{32}$	(14)	$\sqrt{80}$	(15)	$\sqrt{72}$	(16)	$\sqrt{162}$

Simplify these surds (the result is irrational).

(17) $\sqrt{2} + \sqrt{8}$ (18) $\sqrt{75} - \sqrt{12}$ (19) $\sqrt{24} + \sqrt{600}$ (20) $\sqrt{45} + \sqrt{180}$

Exercise C: Rationalising the Denominator

Some times surds appear in fractions.

Rationalising the **denominator** means **re-writing** the **fraction** so the **bottom number** does not contain a **surd** (*i.e.* the **denominator** is **rational**).

Exercise 3

Rationalise the denominator in these surds, simplifying the answer.

(1)
$$\frac{3}{\sqrt{2}}$$
 (2) $\frac{4}{\sqrt{5}}$ (3) $\frac{7}{\sqrt{3}}$ (4) $\frac{10}{\sqrt{7}}$
(5) $\frac{11}{\sqrt{15}}$ (6) $\frac{6}{\sqrt{3}}$ (7) $\frac{12}{\sqrt{6}}$ (8) $\frac{1}{\sqrt{2}}$
(9) $\frac{2\sqrt{2}}{\sqrt{3}}$ (10) $\frac{5\sqrt{7}}{\sqrt{2}}$ (11) $\frac{\sqrt{5}}{\sqrt{11}}$ (12) $\frac{2\sqrt{15}}{\sqrt{5}}$

Rationalise the denominator in these surds, simplifying the answer.

(13)
$$\frac{2}{3\sqrt{8}}$$
 (14) $\frac{6\sqrt{10}}{\sqrt{75}}$ (15) $\frac{12+\sqrt{2}}{\sqrt{2}}$ (16) $\frac{\sqrt{3}-2}{\sqrt{5}}$

Exercise D: Mixed Problems Involving Surds

Evaluate these squares

(1) $(\sqrt{3})^2$ (2) $(2\sqrt{5})^2$ (3) $(6\sqrt{2})^2$ (4) $(4\sqrt{10})^2$

Multiply out the brackets and give the result in the form $a + b\sqrt{c}$

- (5) $(2+\sqrt{3})(3+\sqrt{3})$ (6) $(7+\sqrt{2})(4-\sqrt{2})$
- (7) $(6-\sqrt{5})(4+2\sqrt{5})$ (8) $(2-2\sqrt{2})(3-3\sqrt{2})$

Multiply out the brackets and give the result in the form $a + b\sqrt{c}$

- (9) $(4+\sqrt{2})(4-\sqrt{2})$ (10) $(8+\sqrt{5})(8-\sqrt{5})$
- (11) Given that $a = 3 + 2\sqrt{6}$ and $b = 2 \sqrt{6}$, evaluate
 - (a) a + b
 - (b) a-b
 - (c) a^2
 - (d) *ab*

(12) Given that $x = 5 + \sqrt{7}$ and $y = 5 - \sqrt{7}$, evaluate

- (a) x + y(b) x - y(c) x^2
- (d) *xy*

Work out the missing side in each triangle

SURDS

EXENCISE]

(i) $\sqrt{2} \times \sqrt{2} = 2$ (j) $(\sqrt{67})^2 = \sqrt{8} \times \sqrt{8} = 8$ (j) $\sqrt{57} \times 2\sqrt{7} = 6 \times 7 = 42$ (k) $\sqrt{57} \times \sqrt{20} = \sqrt{1007} = 10$ (k) $\sqrt{27} \times \sqrt{3} = \sqrt{817} = 9$ (k) $\sqrt{27} \times \sqrt{3} = \sqrt{817} = 9$ (k) $\sqrt{12} \times \sqrt{3} = \sqrt{367} = 6$ (k) $\sqrt{757} = \sqrt{157} = \sqrt{157}$ (k) $\sqrt{6} \times \sqrt{37} = \sqrt{157}$

SULDS

(i) $\sqrt{87} = \sqrt{4}\sqrt{27} = 2\sqrt{27}$ (j) $\sqrt{87} = \sqrt{9}\sqrt{27} = 2\sqrt{27}$ (j) $\sqrt{287} = \sqrt{4}\sqrt{27} = 2\sqrt{27}$ (j) $\sqrt{287} = \sqrt{25}\sqrt{57} = 5\sqrt{57}$ (j) $\sqrt{407} = \sqrt{4}\sqrt{107} = 2\sqrt{107}$ (j) $\sqrt{987} = \sqrt{49}\sqrt{127} = 7\sqrt{27}$ (j) $\sqrt{527} = \sqrt{16}\sqrt{127} = 4\sqrt{12}$ (j) $\sqrt{527} = \sqrt{36}\sqrt{127} = 6\sqrt{12}$ (j) $\sqrt{247} + \sqrt{6007} = 2\sqrt{67} + 10\sqrt{67} = 17\sqrt{67}$

$$\int \sqrt{5} \times \sqrt{5} = 5$$

$$(3) \int \sqrt{11} \times \sqrt{11} = 1/$$

$$2\sqrt{3} \times \sqrt{3} = 2\times 3 = 6$$

$$(5) \sqrt{6} \times \sqrt{4} \sqrt{6} = 4 \times 6 = 2 \times 6$$

$$(2\sqrt{5})^{2} = 2\sqrt{5}^{2} \times 2\sqrt{5}^{2} = 4 \times 5 = 2 \times 6$$

$$(5) \sqrt{2}^{2} \times \sqrt{8}^{2} = \sqrt{16} = 4 \times 6 = 2 \times 6$$

$$(5) \sqrt{2}^{2} \times \sqrt{8}^{2} = \sqrt{16}^{2} = 4 \times 5 = 2 \times 6$$

$$(5) \sqrt{2}^{2} \times \sqrt{8}^{2} = \sqrt{16}^{2} = 4 \times 5 = 2 \times 6$$

$$(5) \sqrt{2}^{2} \times \sqrt{8}^{2} = \sqrt{16}^{2} = \sqrt{16}^{2} = 10$$

$$(4) \sqrt{2}^{2} \times \sqrt{32}^{2} = \sqrt{16}^{2} = \sqrt{36}^{2} = 6$$

$$(6) \frac{\sqrt{72}}{\sqrt{22}} = \sqrt{\frac{72}{2}} = \sqrt{36}^{2} = 6$$

$$(8) \sqrt{7}^{2} \times \sqrt{2}^{2} = \sqrt{14}^{2}$$

$$(2) \sqrt{5}^{2} \times \sqrt{6}^{2} = \sqrt{36}^{2}$$

$$\frac{E \times E \times C (15 \le 2)}{2}$$
(2) $\sqrt{75}^{2} = \sqrt{25} \sqrt{3}^{2} = 5\sqrt{3}^{2}$
(4) $\sqrt{50^{2}} = \sqrt{25} \sqrt{2}^{2} = 5\sqrt{2}^{2}$
(5) $\sqrt{490^{2}} = \sqrt{49} \sqrt{10^{2}} = 7\sqrt{10}^{2}$
(6) $\sqrt{63^{2}} = \sqrt{9} \sqrt{7^{2}} = 3\sqrt{7}^{2}$
(6) $\sqrt{63^{2}} = \sqrt{9} \sqrt{7^{2}} = 3\sqrt{7}^{2}$
(7) $\sqrt{60^{2}} = \sqrt{10^{2}} \sqrt{6}^{2} = 10\sqrt{6}^{2}$
(8) $\sqrt{60^{2}} = \sqrt{10^{2}} \sqrt{5}^{2} = 9\sqrt{5}^{2}$
(16) $\sqrt{162^{2}} = \sqrt{81} \sqrt{2}^{2} = 9\sqrt{5}^{2}$
(17) $\sqrt{45^{2}} + \sqrt{10^{2}} = 3\sqrt{5}^{2} + 6\sqrt{5}^{2} = 9\sqrt{5}^{2}$
(2) $\sqrt{45^{2}} + \sqrt{10^{2}} = 3\sqrt{5}^{2} + 6\sqrt{5}^{2} = 9\sqrt{5}^{2}$

SULUS

EXERCISE 3

QUADRATICS

Factorising Quadratics and Solving Equations

Objectives

- ★ factorise quadratic expressions
- \star recognise quadratic forms which will factorise quickly, special cases:
 - $\sum_{i=1}^{N}$ quadratics with x as a common factor (two term)
 - $\frac{1}{100}$ the difference between two squares (two term)
 - \swarrow quadratics with a common numerical factor throughout
- \star appreciate that not all quadratics will factorise
- ★ solve quadratic equations by factorising
- know that the solutions to a quadratic equation are the roots of the quadratic graph
- ★ be aware of different ways of solving quadratic equations

REFERENCE IN OTHER RESOURCES

Head Start:Factorising Quadratics and Equations - Pages 17-22.Alpha Workbooks:Factorising Quadratics and Equations - Pages 20-23.

Factorising Quadratics and Solving Equations

QUADRATICS

A quadratic is a polynomial expression with the highest power of two (order 2).

These are examples of quadratics:

$$x^{2} - 25$$

$$x^{2} + 5x + 6$$

$$3x^{2} + 12x$$

$$2x^{2} + 7x + 3$$

$$9 - x^{2}$$

$$2x^{2} + 10x + 12$$

FACTORISING QUADRATICS

Factorising quadratics means re-writing the quadratic expression using brackets.

QUADRATIC	FACTORISED QUADRATIC
x ² - 25	(x + 5)(x - 5)
$x^{2} + 5x + 6$	(>c + 3) (>c + 2)
3x2 + 12x	3 xc (xc + 4)
$2x^{2} + 7x + 3$	(2x+1)(x+3)
9 - 252	(3 + 3c)(3 - 3c)
2x2+10x+12	2(x+3)(x+2)

In this section, it will be assumed that you can expand brackets (using methods like Forc).

REASONS FOR FACTORISING QUADRATICS

A vital skill in AS/AZ Maths is the ability to factorise a quadratic.

Factorising a quadratic is used in :

- · solving quadratic equations
- · sketching graphs of quadratic functions

COMMENT

There are other ways to do these problems but factorising is often easiest when you can confidently factorise.

However,

IT IS IMPORTANT THAT YOU REALISE THAT NOT ALL QUADRATICS CAN BE FACTORISED.

Factorising Quadratics and Solving Equations

BAS	IC I: TWO	TERM! X	AS A	common	FACT	UN
(j)	x ² + 5 x x (x+5)	0	x²-7× x(x-7)	-	3	x ² - 103c sc (x - 10)
4	2x2+8x 2x(x+4)	\$	3x ² -9, 3x(x-3	c)	6	10x ² +35x 5x(2x+7)
X ² +	53C TWO TERM!	x2-7x Two	TERM !			
X AS A	COMMON FACTOR	oc As A common	FACTOR			
TAKE >	L OUT	TAKE X OUT				
)⊂ (⊃⊂	- + 5)	x (x-7)				
ວເ [∿] −	lose two TERM!	2x2 + 8x Two	TERM !			
x As	A COMMON FACTOR	OC AS A COMMON	FACTOR	SPECIAL CASE !		
TAKE	ac out	2 COMMON NUMERIC	AL FACTOR	X AS A COMMON	FACTOR	
x	-10)	TAKE 200 OUT		LOOK FOR .	QUADRATIC	WITH TWO TERMS
		23c(x+4)			00111 1010+	

BASIC II : TWO T	ERM! DIFFERENCE BETW	EEN TWO SQUARES		
$ () x^{2} - 4 (x+2)(x-2) $	(2) $x^2 - 25$ (x+5)(x-5)	(3) $x^{2} - 49$ (x+7)(x-7)		
(+) 9 - x ² (3 + x)(3 - x)	(2x+9)(2x-9)	 (6) اهمد – اکابوک (4) (4) (4) (4) (4) 		
22-4 Two TERM ? DIFFERENCE BETWEEN TWO SQUARES (2C+2)(2C-2)	$x^{2}-25$ Two TERM! 0 IFFERENCE BETWEEN TWO SQUARES (x+s)(x-5)			
$4x^2 - 81$ Two TERM! 0IFFERENCE BETWEEN TWO SQUARES (2x+9)(2x-9)	16x ² - 121y ² Two TERM! 16x ² - 121y ² Two TERM! 0 IFFERENCE GETWEEN TWO SQUARES (4x + 11y) (4x - 11y)	LENCE BETWEEN TWO SQUARES FOR • QUADRATIC WITH TWO TERMS • DIFFERENCE \bigcirc • SQUARE TERMS NOW KEY RESULT $x^2 - a^2 = (x+a)(x-a)$		
GENERALI: THREE TERM	1!	(COEFFICIENT OF	x2	IS ONE)
--	----	-------------------------------------	--------------------	--
() $x^{2} + 8x + 15$ (x+3)(x+5)	٦	x ² +9x+14 (x+2)(x+7)	3	x² + 14x + 49 (x+7)(x+7)
$(x) = x^{2} - 7x + 10$ $(x - 2)(x - 5)$	٢	x ² -7x+12 (x-3)(x-4)	6	x ² - 15x+54 (x-6)(x-9)
	٢	x ² +4x-21 (x+7)(x-3)	9	x ² - 3x - 10 (x+2)(x-5)
22 + 8 x + 15 ↑ ↑ Вотн ⊕	5			
$x^2 + 8x + 15$		(x+1)(x+15) = :	x² +	16x+15 ×
t t x and x + 1 and + 15 + 3 and + 5		(x+3)(x+5) = >	ሪ ^ጌ + የ	8x + 15 🛩

$$x^{2} - 7x + 10$$

SAME SIGNS
BOTM (C)
 $y^{2} - 7x + 10$
 $x^{2} - 7x + 10$
 $(x-1)(x-10) = x^{2} - 11x + 10$
 $(x-2)(x-5) = x^{2} - 7x + 10$

$$x^{2} + 4x - 21$$

$$f \qquad (x-1)(x+21) = x^{2} + 2x - 21 \times (x+1)(x-21) = x^{2} - 2x - 21 \times (x+1)(x-21) = x^{2} - 2x - 21 \times (x+1)(x-21) = x^{2} - 2x - 21 \times (x+3)(x+7) = x^{2} + 4x - 21 \times (x+3)(x-7) = x^{2} - 4x - 21 \times (x+$$

GENERAL IL : THREE	TERM ! (COEFFICIENT O	F JC2 IS NOT ONE)
() $2x^2 + 7x + 3$	(1) $3x^2 + 5x + 2$	3 222 + 1120 + 14
(2x+1)(x+3)	(3x+2)(x+1)	(23C + 7)(3C+2)
(5x2 - 21x + 4	(b) $3x^2 - 5x + 2$	6 6x2-19x+10
(5x-1)(x-4)	(32-2)(2(-1)	(2x-5)(3x-2)
3x ² +13x-10	3 2x2-13x-7	(g) 422 ² - 4x - 15
(326-2)(26+5)	(2x+1)(x-7)	(2x+3)(2x-5)

$$2x^{2} + 11x + 14$$

↑ ↑ -	$(2x+1)(2x+14) = 2x^{2}+29x+14*$
SAME SIGNS	$(2x+14)(x+1) = 2x^{2} + 16x + 14x$
$2x^{2} + 11x + 14$	$(2x+2)(x+7) = 2x^{2} + 16x + 14$
† † 2x AND xL +1 AND +14 +2 AND +7	$(2x+7)(x+2) = 2x^{2} + 11x + 14$

 $s_{AME} s_{IGNS}$ $s_{0}TM = 5x^2 - 21x + 4$

-2 AND -2

 $(5x - 1)(x - 4) = 5x^{2} - 21x + 4$ $(5x - 4)(x - 1) = 5x^{2} - 9x + 4$ $(5x - 2)(5x - 2) = 5x^{2} - 20x + 4$

$$2x^{2} - 13x - 7$$

$$(2x+1)(x-7) = 2x^{2} - 13x - 7$$

$$(2x-7)(x+1) = 2x^{2} - 5x - 7 \times$$

$$(2x-7)(x+1) = 2x^{2} - 5x - 7 \times$$

$$(2x-7)(x+1) = 2x^{2} + 13x - 7 \times$$

$$(2x-1)(x+7) = 2x^{2} + 13x - 7 \times$$

$$(2x-1)(x+7) = 2x^{2} + 13x - 7 \times$$

$$(2x+7)(x-1) = 2x^{2} + 5x - 7 \times$$

GCSE-AS Mathematics Bridging Unit

Factorising Quadratics and Solving Equations

BASIC III : GENERAL WITH SIMPLIFYING COMMON NUMERICAL FACTOR

(1) $2x^{2} + 10x + 12$ $2(2x^{2} + 10x + 12)$ $2(2x^{2} + 10x + 12)$ $2(2x^{2} + 10x + 12)$ $3(2x^{2} - 3x - 18)$ $3(2x^{2} - 3x - 18)$ $3(2x^{2} + 3)(x - 2)$ 5(x + 2)(x - 2)

$$2x^{2} + 10 \times c + 12$$

$$(2x^{2} + 5x + 6)$$

$$(x^{2} + 5x + 6)$$

 $63c^{2} - 33c - 18$ ECOMMON FACTOR $3(23c^{2} - 3c - 6)$ NOW FACTORISE 3(23c+3)(3c-2)

Exercise A: Factorising Quadratics

Factorising quadratics means writing the quadratic as a product of two linear factors using brackets.

Basic I: Two Term! x as a Common Factor

Factorise these quadratics – they are a special case and can be done quickly.

(1)	$x^{2} + 2x$	(2)	x^2-5x	(3)	$x^{2} + 8x$
(4)	$2x^2 - 6x$	(5)	$5x^2 + 20x$	(6)	$6x^2 - 9x$

Basic II: Two Term! The Difference Between Two Squares

Factorise these quadratics – they are a special case and can be done quickly.

(7) $x^2 - 1$ (8) $x^2 - 36$ (9) $x^2 - 100$ (10) $4 - x^2$ (11) $9x^2 - 16$ (12) $25x^2 - 81y^2$

General I: Three Term! Coefficient of x^2 is One

Factorise these general quadratics, these are the basic general form.

(13)	$x^2 + 7x + 10$	(14)	$x^2 + 6x + 9$	(15)	$x^2 + 7x + 6$
(16)	$x^2 - 10x + 25$	(17)	$x^2 - 9x + 14$	(18)	$x^2 - 9x + 18$
(19)	$x^{2} + 2x - 8$	(20)	$x^{2} + x - 30$	(21)	$x^2 - 7x - 18$

General II: Three Term! Coefficient of x^2 is Not One

Factorise these general quadratics, these are more complex.

(22)	$2x^2 + 11x + 5$	(23)	$5x^2 + 36x + 7$	(24)	$2x^2 + 17x + 21$
(25)	$2x^2 - 5x + 3$	(26)	$3x^2 - 17x + 10$	(27)	$5x^2 - 14x + 8$
(28)	$2x^2 + 7x - 4$	(29)	$3x^2 - 13x - 10$	(30)	$4x^2 + 8x - 21$

Basic III: Three Term! General Type but with Common Numerical Factor

Factorise these quadratics – they are of the general form, but there is a common numerical factor throughout which when taken out simplifies the quadratic.

(31) $2x^2 + 16x + 30$ (32) $5x^2 + 10x - 15$ (33) $3x^2 - 12$

Exercise A: Factorising Quadratics

Factorising quadratics means writing the **quadratic** as a **product** of **two linear factors** using **brackets**.

Mixed Quadratics

Factorise these quadratics.

(34)	$x^{2} + 6x - 27$	(35)	$x^2 - 64$	(36)	$x^2 - 12x + 35$
(37)	$2x^2 + 5x + 2$	(38)	$x^2 - 2x$	(39)	$x^2 + 9x + 18$
(40)	$4x^2 - 4x + 1$	(41)	$3x^2 - 7x + 2$	(42)	$4x^2 - 25$
(43)	$4x^2-6x$	(44)	$3x^2 - 3$	(45)	$2x^2 + 8x - 42$
(46)	$3x^2 - x - 10$	(47)	$2x^2 + 5x - 7$	(48)	$3x^2 + 7x + 2$
	2				

 $(49) \quad 7x^2 - 33x - 10 \qquad (50) \quad 4x^2 - 40x + 100$

QUADRATIC EQUATIONS

<u>Factorising</u> can be used to solve a <u>quadratic equation</u> (providing the quadratic will <u>factorise</u>).

The equation needs to have the form <u>quadratic=0</u>.

The <u>solutions</u> represent the <u>roots</u> of the <u>quadratic</u> i.e. the values of x where the curve cuts the <u>x-axis</u>.

EXAMPLE

Solve $x^2 - 7x + 10 = 0$

SOLUTION

 $x^{2} - 7x + 10 = 0$ (x-2)(x-5) = 0 x-2=0 x-5=0 x=2 x=5

EXAMPLE

Solve $x^2 - 3x - 10 = 0$

SOLUTION

 $x^{2} - 3x - 10 = 0$ (x + 2)(x - 5) = 0 x + 2 = 0 x - 5 = 0x = -2 x = 5 EXAMPLE Solve 3x2- Sx+2=0 SOLUTION $3x^2 - 5x + 2 = 0$ (3x-2)(x-1) = 03x-2=0 x-1=0 3x = 2 x = 1 $3C = \frac{2}{3}$ EXAMPLE Solve 4-22-81=0 SOLUTION $4x^2 - 81 = 0$ (2x+9)(2x-9)=0 2x+9=0 2x-9=0 2x = -9 2x = 9 $\chi = -\frac{9}{7}$ $\chi = -\frac{9}{7}$

EXAMPLÉ

Solve $x^2 + 5x = 6$ <u>Solution</u> $x^2 + 5x = 0$ x(x+5) = 0 x=6 x+5=6yc = -5

Exercise B: Quadratic Equations

Factorising can be used to solve a **quadratic equation** (providing the quadratic will **factorise**).

The equation needs to have the form quadratic = 0.

The **solutions** represent the **roots** of the **quadratic** *i.e.* the values of *x* where the curve cuts the *x*-axis.

Solve these quadratic equations (they are questions 34-50 from the last exercise).

(1)	$x^2 + 6x - 27 = 0$	(2)	$x^2 - 64 = 0$	(3)	$x^2 - 12x + 35 = 0$
(4)	$2x^2 + 5x + 2 = 0$	(5)	$x^2 - 2x = 0$	(6)	$x^2 + 9x + 18 = 0$
(7)	$4x^2 - 4x + 1 = 0$	(8)	$3x^2 - 7x + 2 = 0$	(9)	$4x^2 - 25 = 0$
(10)	$4x^2 - 6x = 0$	(11)	$3x^2 - 3 = 0$	(12)	$2x^2 + 8x - 42 = 0$
(13)	$3x^2 - x - 10 = 0$	(14)	$2x^2 + 5x - 7 = 0$	(15)	$3x^2 + 7x + 2 = 0$
(16)	$7x^2 - 33x - 10 = 0$	(17)	$4x^2 - 40x + 100 = 0$	(18)	$x^2 + 1 = 0$

QUADRATICS, EQUATIONS AND GRAPHS

The <u>solutions</u> of a <u>quadratic equation</u> of the form <u>quadratic = 0</u> give key points on the quadratic graph.

The <u>solutions</u> represent the <u>roots</u> of the <u>quadratic</u> i.e. the values of x where the <u>curve</u> cuts the <u>xc-axis</u>.

• = roots (where graph cuts the x-axis)

NOTE :

In the work in this unit only 'positive' U-shaped quadratics are considered.

EXAMPLE

Find the roots of $y = x^2 - 7x + 10$ and sketch the graph of this quadratic.

SOLUTION

roots $2x^{2} - 73x + 10 = 0$ (2x - 2)(3(-5)) = 0x = 2 + x = 5

EXAMPLE

Find the roots of $y = x^2 - 3x - 10$ and sketch the graph of this quadratic.

SOLUTION

roots 22-32-10=0

(x+2)(x-5) = 6

x=-2 x=5

EXAMPLE

Find the pots of y= 3x2-5x+2 and sketch the graph of this quadratic.

SOLUTION

$$\begin{array}{rcr} roots & 3x^2 - 5x + 2 = 0 \\ (3x - 2)(x - 1) = 0 \\ x = \frac{2}{3} & x = 1 \end{array}$$

EXAMPLE

Find the roots of y=x2+5x and sketch the graph of this quadratic.

SOLUTION

noots $x^2 + 5x = 0$ x(x+5) = 0 $x=0 \quad x=-5$

EXAMPLE

Find the pots of y=42(2-8) and sketch the graph of this quadratic.

SOLUTION

roots
$$4x^{2} - 81 = 0$$

 $(2x + 9)(2x - 9) = 0$
 $x = -\frac{9}{2} - x = \frac{9}{2}$
 $x = -4\frac{1}{2} - x = 4\frac{1}{2}$

Exercise C: Factorising and Graphs

Factorising can be used to solve a **quadratic equation** (providing the quadratic will **factorise**).

The equation needs to have the form quadratic = 0.

The solutions represent the roots of the quadratic *i.e.* the values of x where the curve cuts the x-axis.

Match these quadratic graphs to the quadratics/equations from the last exercise.

Exercise C: Factorising and Graphs

Factorising can be used to solve a **quadratic equation** (providing the quadratic will **factorise**).

The equation needs to have the form quadratic = 0.

The solutions represent the roots of the quadratic *i.e.* the values of x where the curve cuts the x-axis.

Match these quadratic graphs to the quadratics/equations from the last exercise.

0 1

FACTORISING QUADR	ATICS EXERCISE	<u>A</u>
BASIC I : TWO TER	M! DC AS A COMMO	N FACTOR
() $x^{2} + 2x$ x - 2x	 2) 22² - 52 22(22-5) 	(3) x ² + 8x >c (x + 8)
(b) 2x ² - 6x 2x(x-3)	(c) $5x^{2}+20x$ 5x(x+4)	(c) $62c^{2} - 93c$ 33c(23c - 3)
BASIC II : TWO TERM	! DIFFERENCE BETH	DEN TWO SQUARES
$ (\mathbf{x}^{2} - \mathbf{i}) $	(2) $x^2 - 36$ ($x + 6$)($x - 6$)	(9) $2c^{2} - 100$ ($2c + 10$)($2c - 10$)
(2 + 2)(2 - 3	(1) (9x2 - 16) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x - 4) (3x	1 2522-81y2 (5x+9y)(5x-9y)
GENERAL I: THREE	TERM ! COEFFICIEN	T OF 22 IS ONE
(3) $x^{2} + 7x + 10$ (x+2)(x+5)	$(2) x^{2} + 6x + 9$ $(x+3)(x+3)$	(15) $x^{1} + 7x + 6$ (x+6)(3(+1))
(1) $x^{2} - 10x + 25$ (x-5)(x-5)	(17) $x^{-} - 9x + 14$ (x-2)(x -7)	(18) $x^{2} - 9x - 18$ (x - 3)(x - 6)
(19) $x^{+}+2x-8$ (x+4)(x-2)	(2) $x^{2} + x - 3c^{2}$ (x+6)(x-5)	(21) $x^{2} - 7x - 18$ (x+2)(x-9)
GENERAL II : THRE	E TENM! COEFFICIEN	T OF X IS NOT ONE
(1) $2x^{2} + 11x + 5$ (2x+1)(x+5)	$\begin{array}{c} \overbrace{23}^{23} & 5x^2 + 36x + 7 \\ & (5x + 1)(x + 7) \end{array}$	$\begin{array}{c} 24 \\ (2x^{2} + 17x + 2) \\ (2x + 3)(x + 7) \end{array}$
$\begin{array}{c} 23 2x^2 - 5x + 3 \\ (2x - 3)(x - 1) \end{array}$	(2) $3x^{2} - 17x + 10$ (3x - 2)(x - 5)	(2) $5x^{2} - 14x + 8$ (5x - 4)(x - 2)
(2) $2x^{2} + 7x - 4$ (2x - 1)(x + 4)	(29) $3x^2 - 13x - 10$ (3x + 2)(x - 5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
BASIC TIL : GENENAL	WITH SIMPLIFYING CO	MMON NUMERICE FACTOR
(3) 2x ² + 16x + 30 2(2c+3)(2c+5)	(32) 5722 +1072-15 5(72+3)(72-1)	$\begin{array}{c} (33) 3 \ 3 \ 2 \ -12 \\ 3 \ (\ 2 \ +2) \ (3 \ -2) \end{array}$

FACTORISING QUADRATICS EXERCISE A

.

MIXED QUESTION	<u>NS</u>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3) $x^2 - 64$ (x+8)(x-8)	$\begin{array}{c} \hline 36 \\ (x-5)(x-7) \end{array}$
$(3) 2x^{2} + 5x + 2$ (2x + 1)(x + 2)	(38) 22 ⁻ - 2x (x (x-2)	(39) $x^{2} + 9x + 18$ (x+3)(x+6)
$\begin{array}{c} (40) & (4)c^{-} - (4)c + 1 \\ (2x - 1)(2)c - 1 \end{array}$	(4) $3x^{2} - 7x + 2$ (3x - 1)(x - 2)	(42) 422 ² -25 (222+5)(222-5)
(4) $4x^{2} - 6x^{2}$ 2x(2x-3)	(4.4) $3x^{2} - 3$ 3 (x+1)(x-1)	(45) 222 + 822-42 2 (22-3)(22+7)
(46) $3x^2 - x - 10$ (376+5)(x-2)	(47) $2x^{2} + 5x - 7$ (2x + 7)(x - 1)	(48) 3x2+ 7x+2 (32c+1)(x+2)
(49) 7x2-33x-10 (7x+2)(x-5)	$ \underbrace{ 50}^{5} 4x^{2} - 40x + 100 \\ 4 (x - 5)(x - 5) $	
QUADRATIC EQUA	TIONS EXERCIS	E B
) x = -9,3 	(1) x = - 8, 8	(3) $x = 5,7$
(4) x=-2,-1/2	(s) x=0,2	6 xc=-6,-3
(+) x = 1/2	(€) x = 1/3, 2	(g) 3C = -5/2, 5/2
(10) $x = 0, 3/2$	(1) $x = -1/1$	(1) x = -7,3
(1) $x = -5/3$ $y = 2$	(+) $5c = -\frac{7}{2}$	J-, E/- = X (2)
(1) x = -2/7 / 5	(j) 2c = 5	De No Solutions
		$\chi^{1} + 1 = 0$

FACTORISING QUADRATICS EXENCISE C

(i)
$$y = 3i^{2} - 64$$

(i) $y = 2x^{2} + 83i - 42$
(i) $y = 4x^{2} - 403i + 1000$
(ii) $y = 3x^{2} - 73i$
(j) $y = 4x^{2} - 73i$
(j) $y = 4x^{2} - 73i$
(j) $y = 3x^{2} - 73i$
(j) $y = 3x^{2} + 95i + 18$
(j) $y = 4x^{2} - 13i + 35i$
(j) $y = 4x^{2} - 67i$
(j) $y = 7x^{2} + 95i - 13i - 100$
(j) $y = 7x^{2} + 1$
(j) $y = 2x^{2} + 5i - 7i$
(j) $y = 2x^{2} + 5i - 7i$
(j) $y = 3x^{2} + 7x + 1$
(j) $y = 3x^{2} - x - 10$
(j) $y = 4x^{2} - 4xi + 1$

.

SIMULTANEOUS EQUATIONS

Non-Linear Simultaneous Equations

Objectives

- **know basic algebraic skills**
 - $\stackrel{\wedge}{\Sigma}$ expand brackets

- \swarrow substitute numbers into algebraic expressions
- solve quadratic equations by factorising or otherwise
- ★ appreciate that when you solve equations simultaneously, you find where their graphs cross
 - solve simultaneous equations by substitution
- \star solve simultaneous equations involving a line and a quadratic (to determine their crossing points)
- \star solve simultaneous equations involving a line and a circle (to determine their crossing points)
- \star obtain the y-values (know the line is easiest)

verify solutions by substitution

REFERENCE IN OTHER RESOURCES

Head Start: Topic not covered. Alpha Workbooks: Topic not covered.

INTERSECTIONS BETWEEN LINES AND CURVES NON-LINEAR SIMULTANEOUS EQUATIONS Suppose you want to calculate the crossing points of a line and a curve. e.g. 1 LINE AND QUADRATIC e.g. 2 LINE AND CIRCLE IMPORTATIONS

Solving the equations simultaneously will find the crossing point.

な

The method used will be <u>substitution</u>. Substitute the equation in the form <u>y=....</u> into the other equation.

The resulting equation should be a <u>quadratic</u> <u>equation (in x)</u> which can be solved by <u>factorising</u> in most cases. If the quadratic does not factorise use the <u>quadratic formula</u> or <u>complete</u> the square.

The <u>y-values</u> of the crossing point are also often required. To find these it is easiest to put your <u>oc-values</u> found <u>into the straight line</u>. You could then <u>check</u> in the <u>curve</u> if desired.

Quadratics and Lines

Find the points	of inte	ersection	betwe	er :
$y = 3c^2 + 4x - 11$	Û	(qua	dratic c	vrve)
y= 2x-3	٢	(str	aight line	e)
SOLUTION				
$y = x^2 + 4x - 11$	(
y = 2x - 3	٢			
SUBSTITUTE () IN ()	(EQUATE)		
$3c^{2} + 43c - 11 = 7$	Zxc - 3			
$x^{2} + 2x - 8 = 0$	0			
(x+4)(x-2) =	0			
x = -4 x	=2			
* y= -11 y	= 1			
OBTAINING Y-VALU	<u>es</u> *			
To obtain the y put the x-valu- into either equ	y-values es found ation.			
It is much easien put them into th	r to ne line (2)			
y = 2(-4)-3 = -8-	3 = -1}			
y = 2(2) - 3 = 4 -	3 = 1			
This will do! The quadratic u varify.	n00104			
$v_{1} = (-4)^{2} + 4(-4) - 1 =$	16-16-11 =-	1]		
	4+8-11=	1		
いっ (い) ナチ(ひ) 11 う				
$y = (x_1 + 4(x_1) - 11 =$				
y= (1) +4(2)-11 =				
y= (1) +4(2)-11 =		2	V	
y = (c) + 4(c)-11 =		2 1 0		
y = (x) + 4(x) -11 = -8 -7 -6 -5 -4	-3 -2	2 1 0 -1 2 0		3 4
y = (c) + 4(2)-11 = -8 -7 -6 -5 -4	-3 -2	2 1 0 -1 -1 -2 -3		3 4
-8 -7 -6 -5 -4	-3 -2	2 1 0 -11 -2 -3 -4		3 4
y= (c) + 4(z)-11 = -8 -7 -6 -5 -4	-3 -2	2 1 0 1 2 3 7 5 6		3 4
y= (c) + 4(z)-11 = -8 -7 -6 -5 -4	-3 -2	2 1 0 1 2 3 4 5 -6 -7		3 4
y = (c) + 4(z)-11 =	-3 -2	2 1 0 1 2 3 7 -1 2 3 7 -1 -1 0 -1 2 -1 0 -1 2 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 		3 4
y= (c) + 4(z)-11 =	-3 -2	2 -1 -2 -3 -3 -5 -6 -7 -7 -7 -8 -9 -10		3 4

EXAMPLE Solve the following equations simultaneously: $y = 4x^2 - x - 7$ (1) (quadratic curve) y = 2 - x (2) (straight line) SOLUTION $y = 4x^2 - x - 7$ y=2-x 0 SUBSTITUTE () IN () $4x^2 - x - 7 = 2 - x$ 4x2-9=0 (2x+3)(2x-3)=0 $\chi = -\frac{3}{2} \qquad \chi = \frac{3}{2}$ ソーキ ソーシュ OBTAINING Y-VALUES # To obtain the y-values put the x-values found into either equation. It is much easier to put them into the line 2 $y = 2 - \frac{3}{2} = \frac{1}{2}$ This will do! The quadratic would verify リ= 4(-き)-(-==)-7= 9+1シーフ=3シーモ ソ= 4(き)--(き)-7= 9-12-7= 5 4

Exercise A: Quadratics and Lines

Find the points of intersection of the two graphs (quadratic and line).

To do this, solve the equations simultaneously using the substitution method.

You should always end up solving a quadratic equation.

Find the points of intersection between the given curve and the line giving both the x and the y coordinates of the solutions.

(1)	$y = x^2 + 3x - 3$ $y = 2x - 1$	(2)	$y = x^2 - 5x + 10$ $y = 3x - 5$
(3)	$y = x^2 + 5$ $y = 4 - 2x$	(4)	$y = 2x^2 - 8x - 3$ $y = x + 2$
(5)	$y = 2x^2 - 7x + 4$ $y = 1 - 2x$	(6)*	$y = 2x^2 - 15x - 7$ $y = 5x - x^2$
(7)	$y = 4x^2 + 7x - 30$ $y = 7x - 5$	(8)	$y = 2x^2 - 5x + 3$ $y = x + 3$

^{*}This question is finding the intersection between two quadratic graphs, not a line and a curve.

Quadratics and Lines

3 2

θ

1

-2 -3

4 -5

EXAMPLE	EXAMPLE
Solve these equations simultaneously:	Find the points of intersection of
$y = x^2 - 4x$ (quadratic curve)	3 = +7 = 14 (i) (straight
2x + y = 3 (straight line)	$y = x^2 - 3x + 7$ (2) (quadra
SOLUTION	Solution
$y = x^2 - 4x \qquad \bigcirc$	
2x + y = 3 (2)	$3 \pm 2 \pm 2$
SUBSTITUTE () IN ()	y = 2 - 52 + 7 = 0
$2x + (x^2 - 4x) = 3$	
$1x + x^2 - 4x = 3$	3x + 2(x - s(+)) = 14
$x^{-} - 1x = -3$	32 + 22 = 62 + 14 = 14
$x^{L} - 2x + 3 = 0$	
(x+1)(x-3) = 0	
x = -1 $x = 3$	$x = 0$ $x = \frac{3}{2}$
¥ y=5 y=-3	* y=7 y= 19
OBTAINING y-VALUES *	OBTANING y-VALUES to
To obtain the y-values put the x-values found into either equation.	To obtain the y-values put the x-values fand into either equation.
It is much easier to put them into the line (2)	It is much easier to put them into the line ()
$-2 + y^{-3} y^{-5}$	0+2y=14 y=7
6 + 9 = 3 $9 = -3$	$\frac{4}{2}$ + 2 γ = 14
This will do! The quadratic would verify.	$2y = \frac{19}{2}$
y= (-1) ² -4(-1)=1+4=5	η = <u>19</u>
y= (3) ² - 4(3) = 9-12 =-3	The quadratic would verify.

the line and curve : it line) itic curve)

Exercise B: Quadratics and Lines

Find the points of intersection of the two graphs (quadratic and line).

To do this, solve the equations simultaneously using the substitution method.

You should always end up solving a quadratic equation.

Find the points of intersection between the given curve and the line giving both the *x* and the *y* coordinates of the solutions.

- (1) $y = x^2 3x 20$ x + y = 4
- (3) $y = x^2 2x 3$ 2x + y = -2
- $(5) \qquad y = x^2 4x \\ x + 2y = 4$
- (2) $y = x^2 2x 10$ 2x + y = 6
- (4) $y = 2x^2 4x 7$ 2x + y = 5
- (6) 7x + 2y = 14 $y = x^2 - 7x + 7$

Circles and Lines

EXAMPLE

Find where the line crosses the curre.

 $x^2 + y^2 = 16$ (circle radius 4 centre(9,0)) y = 3c - 4 (straight line)

SOLUTION

x2+y2=16 0 y=x-4 0 sulstitute (2) w (1)

 $x^{1} + (x - 4)^{2} = 16$ $x^{1} + x^{1} - 8x + 16 = 16$ $2x^{2} - 8x + 16 = 16$ $2x^{2} - 8x = 0$

- 2,2 (22-4)=0
- x=0 x=4
- * y=-4 y=0

OBTAINING Y-VALUES *

To obtain the gradues put the scrudues found into either equation.

It is much easier to put them into the line (2)

y= 0-4 =-4

y=4-4=0

substitution into the circle would verify.

EXAMPLE

Solve	these	equations	simultaneously:	
>c²+y y = >c	$^{2} = 2q$	() ()	(circle radius J29) (straight line)	centre (0,01)
SOLUTIO	2			
x2+4 Y = x	j ² = 29 -3	0 D		

SUBSTITUTE (2) IN () $\chi^{2} + (2c-3)^{2} = 2q$ $\chi^{2} + 2x^{2} - 6x + q = 2q$ $2\chi^{2} - 6x - 20 = 0$ $2(\chi^{2} - 3\chi - 10) = 0$ 2(3x + 2)(x - 5) = 0 $\chi = -2$ $\chi = 5$

y=-5 y=2

OBTAINING Y-VALUES *

To obtain the y-values put the x-values found into either equation.

It is much easier to put them into the line (2)

y = -2-3 = -5

y= 5-3 = 2

Substitution into the circle would verify.

Exercise C: Circles and Lines

Find the points of intersection of the two graphs (circle and line).

To do this, solve the equations simultaneously using the substitution method.

You should always end up solving a quadratic equation.

Find the points of intersection between the given curve and the line giving both the *x* and the *y* coordinates of the solutions.

(1)	$x^2 + y^2 = 100$	(2)	$x^2 + y^2 = 25$
	y = 3x + 10		y = x - 7
(3)	$x^2 + y^2 = 17$	(4)	$x^2 + y^2 = 20$
	y = 4x		y = 10 - 2x

(5)
$$x^2 + y^2 = 10$$

 $y = 3x + 10$ (6) $x^2 + y^2 = 169$
 $2y = 3x - 39$

LINES AND CURVES
(i) $y = x^{2} + 3x - 3$ (i) y = 2x - 1 (i)
SUBSTITUTE () IN ()
$x^{2} + 3x - 3 = 2x - 1$
$x^{2} + x - 2 = 0$
(x+2)(x-1) = 0
x = -2 $x = 1$
y=-5 y=1
(3) $y = x^{2} + 5$ (1) y = 4 - 2x (2)
SUBSTRUTE (DIN 2)
$x^{2} + S = 4 - 2x$
$x^2 + 2x + 1 = 0$
(x+i)(x+i) = 0
X = -1
y = 6

EXERCISE 1 (2) $y = 3x^{2} - 5x + 10$ (1) y = 3x - 5 (2) SUBSTITUTE (1) IN (2) $x^2 - 5x + 10 = 3x - 5$ $x^2 - 8x + 15 = 0$ (x-3)(x-5) = 0x=3 x=5 y=4 y=10 SUBSTITUTE () IN (2) $2x^2 - 8x - 3 = x + 2$ $2x^2 - 9x - 5 = 0$ (2x+1)(x-5)=0 $x = \frac{1}{2} \quad x = 5$ y= 3 y=7

$$\frac{LINES AND CURVES}{S}$$
(5) $y = 2x^{2} - 7x + 4$ (1)
 $y = 1 - 2x$ (2)
SUBSTITUTE (1) IN (2)
 $2x^{2} - 7x + 4 = 1 - 2x$
 $2x^{2} - 5x + 3 = 0$
 $(2x - 3)(x - 1) = 0$
 $x = \frac{3}{2}$ $x = 1$
 $y = -2$ $y = -1$

(7)
$$y = 4x^{2} + 7x - 30$$
 (1)
 $y = 7x - 5$ (2)
SUBSTITUTE (1) IN (2)
 $4x^{2} + 7x - 30 = 7x - 5$
 $4x^{2} - 25 = 0$
 $(2x + 5)(2x - 5) = 0$
 $x = -\frac{5}{2}$ $x = \frac{5}{2}$
 $y = -\frac{45}{2}$ $y = \frac{25}{2}$

EXERCISE] (b) $y = 2x^2 - 15x - 7$ (c) $y = 5x - x^2$ (c) SUBSTITUTE () ·~ (2) $2x^2 - 15x - 7 = 5x - x^2$ 3x2 - 20x -7 = 0 (3x+1)(x-7) = 0x=-1 x=7 PUT VALVES IN 3 $y = 5(-\frac{1}{3}) - (-\frac{1}{3})^2$ $y = 5(7) - (7)^2$ $y = \frac{5}{3} - \frac{1}{9}$ y = 35 - 49 $y = \frac{15}{9} - \frac{1}{9}$ y = -14 $y = -\frac{16}{9}$ (8) $y = 2x^2 - 5x + 3$ (2) y = x + 3 (2) SUBSTITUTE DIN @ $2x^2 - 5x + 3 = x + 3$ 2x2-6x = 0 2x(x-3) = 0x=0 x=3 y=3 y=6

LINES AND CURVES
() $y = x^{2} - 3x - 20$ () x + y = 4 (2)
SUBSTITUTE DIN 2
$x + (x^2 - 3x - 20) = 4$
$x + x^2 - 3x - 20 = 4$
$32^{2} - 232 - 20 = 4$
$x^{2} - 2x - 24 = 0$
(x-6)(x+4)=0
x=6 $x=-4$
y=-2 y=8
3) $y = x^2 - 2x - 3$ (1) 2x + y = -2 (2)
SUBSTITUTE DI 1~ 2
$2x + (x^2 - 2x - 3) = -2$
$2x + x^2 - 2x - 3 = -2$
$x^{2} - 1 = 0$
(x+1)(x-1) = 0
x = -1 $x = 1$
y=0 y=-4

(2) $y = x^2 - 2x - 10$ (1) 2x + y = 6 (2) SUBSTITUTE () IN (2) $2x + (x^2 - 2x - 10) = 6$ $2x + x^2 - 2x - 10 = 6$ $x^2 - 10 = 6$ $x^{2} - 16 = 0$ (x-4)(x+4)=0x = 4 x = -4y=-2 y=14 (4) $y = 2x^2 - 4x - 7$ (1) 2x + y = 5 (2) $\overline{\mathbf{c}}$ SUBSTITUTE () IN (2) $2x + (2x^2 - 4x - 7) = 5$ $2x + 2x^2 - 4x - 7 = 5$ $2x^2 - 2x - 7 = 5$ $2x^2 - 2x - 12 = 0$ $2(x^2 - x - 6) = 0$ 2(x+2)(x-3)=0x = -2 x = 3

EXENCISE Z

LINES AND CURVES
(5)
$$y = \chi^2 - 4\chi$$
 (0)
 $x + 2y = 4$ (2)
SUBSTITUTE (1) IN (2)
 $x + 2(\chi^2 - 4\chi) = 4$
 $x + 2\chi^2 - 8\chi = 4$
 $2\chi^2 - 7\chi = 4$
 $2\chi^2 - 7\chi = 4$
 $2\chi^2 - 7\chi = 4$
 $(2\chi + 1)(\chi - 4) = 0$
 $\chi = \frac{1}{4}$ $y = 0$

$$\underbrace{Exercise 2}_{6} = 7x + 2y = 14 \quad 0 \\ y = x^{2} - 7x + 7 \quad (2)$$

$$y = x^{2} - \frac{1}{2}x^{2} + \frac{1}{2}(2)$$
SUBSTITUTE (2) IN (1)
 $7x + 2(x^{2} - 7x + 7) = 14$
 $7x + 2x^{2} - 14x + 14 = 14$
 $2x^{2} - 7x + 14 = 14$

$$\frac{LINES}{1} = 100 \quad (1) \quad (2) \quad (2) \quad (3) \quad (3$$

(3)
$$x^{2} + y^{2} = 17$$
 (1)
 $y = 4x$ (2)
SUBST IT UTE (2) IN (1)
 $x^{2} + (4x)^{2} = 17$
 $x^{2} + 16x^{2} = 17$
 $17x^{2} - 17 = 17$
 $17x^{2} - 17 = 0$
 $17(x^{2} - 1) = 0$
 $17(x^{2} - 1) = 0$
 $17(x + 1)(x - 1) = 0$
 $x = -1$ $y = 1$

ERCISE 3 >c2 + y2 = 25 0 y=x-7 (2) BSTITUTE @ IN () $x^{2} + (x-7)^{2} = 25$ $y_{1}^{2} + y_{1}^{2} - 14y_{1} + 49 = 25$ $2x^2 - 14x + 49 = 25$ $2x^{2} - 14x + 24 = 0$ $(x^2 - 7x + 12) = 0$ (x-3)(x-4) = 0x = 3 x = 4y=-4 y=-3 (4) $x^{2} + y^{2} = 20$ () $y = 10 - 2\pi$ (2) SUBSTITUTE () IN () $x^{2} + (10 - 2x)^{2} = 20$ $\chi^{2} + 100 - 40\chi + 4\chi^{2} = 20$ $5x^2 - 40x + 100 = 20$ $5x^2 - 40x + 80 = 0$ 5 (x2 - g, + 16)=0 5(2c-4)(2c-4)=0 $\chi = 4$ y=2 TANGENT!

$$\frac{LINES AND CIRCLES}{(5)} x^{2} + y^{2} = 10 (0)
y = 3x + 10 (2)
SUBSTITUTE (2) IN (2)
x^{2} + (3x + 10)^{2} = 10
x^{2} + (3x + 10)^{2} = 10
x^{2} + 9x^{2} + 60x + 100 = 10
10x^{2} + 60x + 100 = 10
10x^{2} + 60x + 90 = 0
10(x^{2} + 6x + 9) = 0
10(x^{2} + 6x + 9) = 0
x = -3
y = 1 TAN GENT !!$$

EXENCISE 3 6 x2+y2 = 169 0 2y=3x-39 2 SUBSTITUTE REALAANGED @ (N) (D) 2y= 3x-39 - y= 3x-39 $3c^{2} + \left(\frac{32c-39}{2}\right)^{2} = 169$ EAACTICA 1521 = 4×169 4x2 + 9x2 - 234x+ 1521 = 676 1322 - 2342 + 845 =0 13 (22 - 182(+ 65) = 0 13 (x-5)(x-13)=0 x=5 x=13

$$2c^{2} + \frac{9zc^{2} - 234zc + 1521}{4} = 169$$

$$4 \times 3c^{2} + 9x^{2} - 234x +$$

QUADRATICS

Completing the Square

Objectives

- \star be able to complete the square for basic quadratics
- \star solve quadratic equations by completing the square
- \star be aware of different ways of solving quadratic equations
- \star know how the completed square form relates to the graph (how to get the vertex)
- \star match quadratics to their graphs and vice-versa through key features

REFERENCE IN OTHER RESOURCES

Head Start:Topic not covered.Alpha Workbooks:Topic not covered.

COMPLETING THE SQUARE

<u>Completing the square</u> is another way of writing a <u>quadratic</u>

The following table gives some quadratics and their completed square form

QUADRATIC	COMPLETED SQUARE
2c ² -43c-5	$(2 - 2)^{1} - 9$
$x^{2} + 8x + 15$	$(x + 4)^{1} - 1$
x ² - 2x + 6	(sc - 1) ² + 5
2 x2 - 4x-16	$2(3c-1)^2 - 18$

ALGEBRAIC METHOD

EXAMPLE

Write x2-4xc-5 in completed square form.

SOLUTION

 $x^{2} - 4x - 5$ yhalf subtract square of number in bracket $(x - 2)^{2} - 5 \left\{-4\right\}$ $(x - 2)^{2} - 9$

SOLVING QUADRATIC EQUATIONS

Completing the square can be used to solve quadratic equations.

Alternative methods are: . factorising

· quadratic formula

EXAMPLE

Solve x2-42c-5=0 by completing the square.

SOLUTION

 $x^{2} - 4x - 5 = 0$ $(x - 2)^{2} - 9 = 0$ $(x - 2)^{2} = 9$ $x - 2 = \pm 3$ $x = 2 \pm 3 \Rightarrow x = 5, -1$

EXAMPLE

Solve $\chi^2 + 8sc + 15=0$ by completing the square.

SOLUTION

 $x^{2} + 8x + 15 = 0$ $(x + 4)^{2} - 1 = 0$ $(x + 4)^{2} = 1$ $x + 4 = \pm 1$ $x = -4 \pm 1 \rightarrow x = -5, -3$

EXAMPLE
Solve
$$x^{2} + 2x - 5 = 0$$

Solution
 $x^{2} + 2x - 5$
compute the square
 $(x + 1)^{2} - 5 - 1$
 $(x + 1)^{2} - 6 = 0$
 $(x + 1)^{2} - 6 = 0$
 $(x + 1)^{2} = 6$
 $x + 1 = \pm \sqrt{67}$
 $x = -1 \pm \sqrt{67}$

Write x2-2x+6 in the form (sc+a)2+b

half subtract square of number in bracket

i.e. complete the square.

 $(\infty - 1)^2 + 6 = 1$

EXAMPLE

SOLUTION

x2 - 2x + 6

 \downarrow

 $(3c - 1)^{2} + 5$

Exercise A: Algebraic Method

Completing the square is another way of writing a **quadratic**.

The completed square form is useful as it gives you information about where the **bottom** (or **top**) of a **quadratic graph** is.

Completing the square can also be used to solve quadratic equations.

Complete the square for these basic quadratics. All of these quadratics will factorise.

(1)	$x^2 - 6x + 8$	(2)	$x^{2} + 2x - 3$
(3)	$x^{2} + 12x + 20$	(4)	$x^{2} + 4x$
(5)	$x^2 - 2x - 63$	(6)	$x^2 - 2x - 15$
(7)	x^2-6x	(8)	$x^{2} + 4x - 21$
(9)	$x^2 - 6x - 7$	(10)	$x^{2} - 2x$
(11)	$x^2 - 10x + 21$	(12)	$x^{2} + 6x - 27$
(13)	$x^2 - 4x + 3$	(14)	$x^2 - 8x - 9$

Complete the square for these basic quadratics. These quadratics will not factorise but some do have roots.

111000	quadratico	 100001100	040 501110	<i>ao mare roots.</i>	

(15)	$x^2 - 2x - 2$	(16	(b) $x^2 + 4x - 3$
------	----------------	-----	--------------------

(17) $x^2 - 6x + 13$ (18) $x^2 + 10x + 30$

Complete the square for these harder quadratics.

The two quadratics here will factorise (they are a special case!).

 $(19) \quad 2x^2 - 12x + 16 \qquad (20) \quad 3x^2 - 12x - 63$

Exercise B: Solving Quadratic Equations by Completing the Square

Completing the square can be used to solve quadratic equations.

Solving the equation will find the **roots** of the **quadratic graph**.

The **roots** of a graph are where they **cross the** *x***-axis**.

Solve the following equations by completing the square. Check your answer by factorising.

(1)	$x^2 - 6x + 8 = 0$	(2)	$x^2 + 2x - 3 = 0$
	$(x-3)^2 - 1 = 0$		$(x+1)^2 - 4 = 0$
(3)	$x^2 + 12x + 20 = 0$	(4)	$x^2 + 4x = 0$
	$(x+6)^2 - 16 = 0$		$(x+2)^2 - 4 = 0$
(\boldsymbol{z})	2	$(\cap$	2

(5)
$$x^2 - 2x - 63 = 0$$

 $(x - 1)^2 - 64 = 0$
(6) $x^2 - 2x - 15 = 0$
 $(x - 1)^2 - 16 = 0$

(7)
$$x^2 - 6x = 0$$

 $(x - 3)^2 - 9 = 0$
(8) $x^2 + 4x - 21 = 0$
 $(x + 2)^2 - 25 = 0$

(9)
$$x^{2}-6x-7=0$$
 (10) $x^{2}-2x=0$
 $(x-3)^{2}-16=0$ $(x-1)^{2}-1=0$

(11)
$$x^{2} - 10x + 21 = 0$$

 $(x - 5)^{2} - 4 = 0$
(12) $x^{2} + 6x - 27 = 0$
 $(x + 3)^{2} - 36 = 0$
(13) $x^{2} - 4x + 3 = 0$
(14) $x^{2} - 8x - 9 = 0$

$$(x-2)^2 - 1 = 0 \qquad (x-4)^2 - 25 = 0$$

Solve the following equations by completing the square. These could not be solved by factorising.

(15) $x^{2} - 2x - 2 = 0$ $(x - 1)^{2} - 3 = 0$ (16) $x^{2} + 4x - 3 = 0$ $(x + 2)^{2} - 7 = 0$ (17) $x^{2} - 6x + 13 = 0$ $(x - 3)^{2} + 4 = 0$ (18) $x^{2} + 10x + 30 = 0$ $(x + 5)^{2} + 5 = 0$

Solve the following equations by completing the square. Check your answer by factorising.

(19) $2x^2 - 12x + 16 = 0$ $2(x-3)^2 - 2 = 0$ (20) $3x^2 - 12x - 63 = 0$ $3(x-2)^2 - 75 = 0$

The <u>completed</u> square form is useful as it gives you information about where the <u>vertex</u> (bottom or top) of a <u>quadratic graph</u> is.

- · to find the sc-value make the bracket zero
- · the y-value is the number at the end.
- $y = 2x^{2} 42x 5$ $y = (2x 2)^{2} 9$

(2) $y = x^{2} + 8x + 15$ $y = (x + 4)^{2} - 1$

(3) $y = x^{2} - 2x + 6$ $y = (x - 1)^{2} + 5$

(a) $y = 2x^{2} - 4x - 16$ $y = 2(x - 1)^{2} - 18$

Exercise C: Graphical Information From the Completed Square Form

The **completed square** form is useful as it gives you information about where the **vertex (bottom** or **top)** of a **quadratic graph** is.

This exercise is designed to increase your awareness of how the **completed square form** relates to the **graph** of the **quadratic**.

The roots from the solution of the quadratic equation (by factorising/completing the square/quadratic formula) are also marked as is the *y*-intercept.

These are graphs of ten of the quadratics from the first exercise.

For each graph write below it:

the completed square form, the factorised form, the polynomial form.

Exercise C: Graphical Information From the Completed Square Form

Exercise C: Graphical Information From the Completed Square Form

Exercise C: Graphical Information From the Completed Square Form

COMPLETING THE SQUARE

EXANCISE A

3 x2+125c+20 (i) $x^2 - 6x + 8$ (2) $x^{1}+2x-3$ \oplus $x^1 + 4x$ $(x - 3)^2 + 8 - 9$ $(x+2)^{2}-4$ $(x+6)^{1}+20-36$ $(x+1)^2 - 3 - 1$ $(x+6)^2 - 16$ $(x - 3)^{2} - 1$ $(x+1)^{2}-4$ (5) x²-2x-63 6 (x²-2x-15 > x2-6x (2) $x^{1}+4yz-21$ $(2c-3)^{1}-9$ $(x - 1)^{2} - 63 - 1$ (sc-1)2-15-1 $(x+2)^2-21-4$ (x-1)2-64 (x-1)2-16 $(x+2)^{2}-25$ 1) x2-10x+21 (9) x^{-6x-7} (12) x2+6x-27 b $\chi^2 - \lambda_X$ $(2c-1)^{2}-1$ $(x+3)^2-27-9$ $(x-5)^{1}+21-25$ $(x-3)^{L}-7-9$ $(x - 3)^2 - 16$ (2c-5)2-4 $(2L+3)^{1}-3($ (3) $\chi^2 - 4x + 3$ (15) $x^{1} - 2x - 2$ $(4) x^{1} - 8x - 9$ (10) $x^{2} + 4x - 3$ $(x - 4)^2 - 9 - 16$ $(x-1)^2 - 2 - 1$ $(x-2)^{1}+3-4$ $6c + 2)^{2} - 3 - 4$ $(x-l)^{2}-1$ $(x-1)^2 - 3$ $(x+1)^{2}-7$ $(x - 4)^{1} - 25$ (B) x1-6x+13 (18) x2 + 10x + 30 (19) $2x^{1} - 12x + 16$ (20) 322-12x-63 $(x-3)^{1}+13-9$ $(x+5)^{2}+30-8$ 2[212-62]+16 3[22-42]-63 $(x-3)^{1}+4$ $(x+5)^{2}+5^{2}$ 2[(x-3)-9]+16 3L(3(-2)) - 41 - 63 $2(2(-3)^2-18+16)$ $3(x-2)^{2} - n - G$

COMPLETING THE SQUARE

EXENCISE B

 $2(2x-3)^{2}-2$

 $3(x-2)^2 - 75$

(4) $)(^{2}+4x = 0)$ (3) x + 120+20=0 (i) $x^2 - 6x + 8 = 0$ (2) $x^{2}+3c-3=0$ $(x+2)^{2}-4=0$ $(x+6)^2 - 16 = 0$ $(3c-3)^{2}-1=0$ $(2c+1)^2-4=0$ (3C+2)2 = 4 $(x+6)^2 = 16$ $(6c+i)^2 = 4$ $(5(-3)^2 = 1$ $3C+6 = \pm 4$ >C+2 = = = 22 $x-3 = \pm 1$ 20+1=+2 $3(=-6\pm4)$ x =- 2 = 2 $x = 3 \pm 1$ x = -1=2 20 = -4,0 x = 2, 4sc = -3,1 x = -10, -2 (8) x2+471-21=0 (7) 22¹-62 =0 () x2-2x-15=0 (5) x²-2x-63=0 $(x+2)^2-25=0$ $(x - 1)^{L} - 16 = 0$ $(x-3)^{2}-9=0$ (x -1)2 - 64 =0 $(x+z)^2 = 25$ $(x-1)^{2} = 16$ $(x-3)^2 = 9$ $(2c-1)^{2} = 64$ X+2 = ±5 (x - 1) = I 4 $x - 3 = \pm 3$ x-1 =±8 $5c = 1 \pm 4$ x=~2*5 $x = 3 \pm 3$ $x = 1 \pm 8$ 2 = -7,3 x = -3,5x = 0, 6x = -7,9

EOMPLETING THE SQUARE EXERCISE B

$ (f) x^{2} - 6x - 7 = 0 (x - 3)^{2} - 16 = 0 (x - 3)^{2} = 16 x - 3 = \pm 4 x = 3 \pm 4 x = -1, 7 $	(1) $2c^{2}-2c=0$ $(2c-1)^{2}-1=0$ $(2c-1)^{2}=1$ $x-1=\pm 1$ $2c=1\pm 1$ 2c=0,2	(1) $\chi^{1} = 10\chi + 21 = 0$ $(\chi - 5)^{1} = 4 = 0$ $(\chi - 5)^{1} = 4$ $\chi - 5 = \pm 2$ $\chi = 5 \pm 2$ $\chi = 3, 7$	(1) $x^{2} + 6xc + 27 = 0$ $(5c + 3)^{2} - 36 = 6$ $(2c + 3)^{2} = 36$ $2c + 3 = \pm 6$ $2c = -3 \pm 6$ 2c = -9, 3
(3) $x^{2} - 4x + 3 = 6$ $(x - 2)^{2} - 1 = 0$ $(x - 2)^{2} = 1$ $x - 2 = \pm 1$ $x = 2 \pm 1$ x = 1, 3	$ \begin{aligned} &(4) x^{2} - 8x - 9 = 0 \\ &(x - 4)^{2} - 25 = 0 \\ &(x - 4)^{2} = 25 \\ &(x - 4)^{2} = 25 \\ &z - 4 = \pm 5 \\ &z = 4 \pm 5 \\ &z = -1, 9 \end{aligned} $	(is) $x^{1} - 2x - 2 = 0$ $(2x - 1)^{2} - 3 = 0$ $(x - 1)^{2} = 3$ $x - 1 = \pm \sqrt{3}^{2}$ $x = 1 \pm \sqrt{3}^{2}$	(i) $x^{2}+4x-3=0$ $(x+2)^{2}-7=0$ $(x+2)^{2}=7$ $x+2=\pm\sqrt{7}$ $x=-2\pm\sqrt{7}$
(17) $x^{2} - 6x + 13 = 0$ $(x - 3)^{2} + 4 = 0$ $(5(-3)^{2} = -4$ NO SOLUTIONS CANT $\sqrt{-4^{2}}$	(18) $x^{2} + 10x + 30=0$ $(x + 5)^{2} + 5=0$ $(x + 5)^{2} = -5$ No solutions CAN'T $\sqrt{-51}$	(19) $2 \times 2 - 12x + 16 = 0$ $2(x-3)^2 - 2 = 0$ $2(x-3)^2 = 2$ $(x-3)^2 = 1$ $3x-3 = \pm 1$ $3x = 3 \pm 1$ x = 2, 4	(2) $3x^{2} - 12x - 63 = 6$ $3(x-2)^{2} - 75 = 6$ $3(x-2)^{2} = 75$ $(2x-2)^{2} = 25$ $2x-2 = \pm 5$ 2x = -3, 7
COMPLETING T	HE SQUARE	EXERCISEC	
() $(x-3)^{2} - 1$ (x-2)(x-4) $x^{2} - 6x + 8$	(2) (2+2) ² -4 2(2+4) 2 ² +42	(3) (22-1) - 16 (22+3)(7(-5) x 2 - 232 - 15	$(+) (x_{+1})^{-4} (x_{+3})(x_{-1}) x^{+} + 2x_{-3}$
(s) $(x-3)^{1} - 9$ x(x-6) $x^{1} - 6x$	$ (\bigcirc (2x-3)^{2} - 16) (\infty+1)(2x-7) x^{2} - 62x - 7 $	$ (x-2)^{2} - 1 (x-1)(x-3) x^{2} - 4x + 3 $	($\chi -3$) ² +4 NO FACTORS $\chi^{1} = 6\chi + B$
(a) $2(x-3)^2 - 2$ 2(x-2)(x-4)	$(x - 1)^{2} - 3$ IRRATIONAL FAC	Tal	

2x2-12x+16

22-226-2

QUADRATICS

The Quadratic Formula

Objectives

- \star learn the quadratic formula
- \star solve quadratic equations using the quadratic formula
- \star give answers in exact form or to a specified number of decimal places
- ★ be aware of different ways of solving quadratic equations
- \star solve problems involving quadratic equations

REFERENCE IN OTHER RESOURCES

Head Start:Topic not covered.Alpha Workbooks:Quadratic Formula - Pages 23-25

Quadratics - The Quadratic Formula

THE QUADRATIC FORMULA

Given a quadratic equation of the form:
$$a > c^2 + b > c + c = 0$$

The equation can be solved using the quadratic formula:

$$bc = -b \pm \sqrt{b^2 - 4ac}$$

Always ensure that the quadratic equation is put in the form quadratic = \bigcirc before solving!

There are various ways of solving quadratic equations:

- · by <u>factorising</u> the quadratic (not all will factorise!)
- · by completing the square
- · using the quadratic formula

EXAMPLE

Use the quadratic equation to solve: $x^2 + 5x + 6 = 0$

SOLUTION

$$a = 1 \quad b = 5 \quad c = 6$$

$$x = \frac{-5 \pm \sqrt{(5)^2 - (4 \times 1 \times 6)}}{2}$$

$$x = \frac{-5 \pm \sqrt{25 - 24}}{2}$$

$$x = \frac{-5 \pm \sqrt{1}}{2}$$

$$x = \frac{-5 \pm \sqrt{1}}{2}$$

$$x = -\frac{5 \pm \sqrt{1}}{2}$$

$$x = -\frac{5 \pm \sqrt{1}}{2}$$

$$x = -\frac{6}{2} \quad 62 \quad 36 = -\frac{4}{2}$$

x = -3 or x = -2

* NOTE *

This illustrates the method but it would have been much easier to factorise! (3c+3)(x+2) = 0x=-3 x=-2

EXAMPLE

Use the quadratic formula to solve: $x^2 = 4x - 2$

SOLUTION

Start by Making quadratic = 0

$$x^{2} - 4x + 2 = 0$$

$$a = 1$$
 $b = -4$ $c = 2$

$$x = \frac{4 \pm \sqrt{(-4)^2 - (4 \times 1 \times 2)}}{2}$$
$$x = \frac{4 \pm \sqrt{16 - 8}}{2}$$

$$x = \frac{4 \pm \sqrt{8}}{2}$$

$$5C = 3.41$$
 or $5C = 0.59$

* NOTE *

This quadratic equation would not factorise!

Completing the square would have been another option !

 $\frac{EXAMPLE}{Solve \ 6x^{2} + x - 12 = 0}$ $Solve \ 6x^{2} + x - 12 = 0$ $Solve \ 6x^{2} + x - 12 = 0$ $x = -1 \pm \sqrt{(1)^{2} - (4 \times 6 \times 12)^{2}}$ $x = -1 \pm \sqrt{(1)^{2} - (4 \times 6 \times 12)^{2}}$ $x = -1 \pm \sqrt{1 - (-288)}$ $x = -1 \pm \sqrt{1289}$ $x = -1 \pm \sqrt{1289}$ $x = -1 \pm \sqrt{12}$ $x = -\frac{18}{12} \text{ or } x = \frac{16}{12}$ $x = -\frac{3}{2} \text{ or } x = \frac{14}{3}$ (APTER SUMPLEYING)

Quadratics - The Quadratic Formula

Exercise: Solving Equations using the Quadratic Formula

Given a quadratic equation of the form:

$$ax^2 + bx + c = 0$$

The equation can be solved in a number of ways:

- by **factorising** the quadratic {not all quadratics will factorise}
- by completing the square
- using the quadratic formula

The **quadratic formula** finds the solutions *x* of the equation by substitution:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Always ensure that the **quadratic equation** is put into the form $\mathbf{quadratic} = \mathbf{0}$ before using the formula to try and solve it; sometimes you have to manipulate the equation.

Use the quadratic formula to solve these equations (all will factorise):

- (1) $x^2 + 8x + 15 = 0$ (2) $x^2 4x = 5$
- (3) $2x^2 5x 3 = 0$ (4) $x^2 + 2x + 1 = 0$

Use the quadratic formula to solve these equations, give the answer both in surd form and also to two decimal places (these will not factorise):

(5) $x^2 - 2x - 6 = 0$ (7) $x^2 = 1 - x$ (8) $x^2 = x + 5$

(9) The product of two consecutive positive numbers is 240.Denoting the smaller number *x* then the problem is satisfied by the equation:

$$x(x+1) = 240$$

(a) show that this manipulates to the equation:

$$x^{2} + x - 240 = 0$$

- (b) solve the equation using the quadratic formula to find the two numbers
- (10) A garden has a length which is 5 m more than its width (width = x m). The area of the garden is 30 m².
- (a) show that this problem satisfies the equation $x^2 + 5x 30 = 0$
- (b) solve the equation to find the width and length of the garden

$$(x+5)$$

QUADRATIC FORMULA

()
$$x^{2} + 8x + 15 = 0$$

 $a = 1$ $b = 8$ $c = 15$
 $x = -\frac{8 \pm \sqrt{(8)^{2} - (4 \times 1 \times 15)^{2}}}{2 \times 1}$
 $x = -\frac{8 \pm \sqrt{64 - 60^{2}}}{2}$
 $x = -\frac{8 \pm \sqrt{4}}{2}$
 $x = -\frac{8 \pm \sqrt{4}}{2}$
 $x = -\frac{8 \pm 2}{2} = -\frac{5}{3}$

(3)
$$2x^{2} - 5x - 3 = 0$$

 $q = 2$ $b = -5$ $c = -3$
 $x = \frac{5 \pm \sqrt{(-5)^{2} - (4 \times 2 \times -3)^{2}}}{2 \times 2}$
 $x = \frac{5 \pm \sqrt{25 - (-24)^{2}}}{4}$
 $x = \frac{5 \pm \sqrt{49}}{4}$
 $x = \frac{5 \pm \sqrt{49}}{4}$

(2)
$$x^{2} - 4x - 5 = 0$$

 $x^{2} - 4x - 5 = 0$
 $a = 1$ $b = -4$ $c = -5$
 $x = \frac{4 \pm \sqrt{(-4)^{2} - (4 \times 1 \times -5)^{2}}}{2 \times 1}$
 $x = \frac{4 \pm \sqrt{16 - (-20)^{2}}}{2}$
 $bc = \frac{4 \pm \sqrt{36}}{2}$
 $bc = \frac{4 \pm \sqrt{36}}{2}$
 $bc = \frac{4 \pm 6}{2} = -1)5$
 $c = \frac{4 \pm 6}{2} = -1)5$
(4) $x^{2} + 2x + 1 = 0$
 $a = 1$ $b = 2$ $c = 1$
 $bc = -2 \pm \sqrt{(2)^{2} - (4 \times 1 \times 1)^{2}}}$
 $x = -2 \pm \sqrt{4 - 4}$
 $z = -2 \pm \sqrt{4 - 4}$
 $c = -2 \pm \sqrt{5}$
 $x = -2 \pm \sqrt{5}$

QUADRATIC FORMULA
(S)
$$x^{2} - 23c - 6 = 0$$

 $a = 1$ $b = -2$ $c = -6$
 $x = \frac{2 \pm \sqrt{(-2)^{2} - (4 \times 1 \times -6)}}{2 \times 1}$
 $x = \frac{2 \pm \sqrt{28}}{2}$
 $x = \frac{2 \pm \sqrt{28}}{2}$
 $3c = -1.65$, $x = 3.65$
(7) $x^{2} = 1 - 3c$
 $x^{2} + 3c - 1 = 0$
 $a = 1$ $b = 1$ $c = -1$
 $x = -\frac{1 \pm \sqrt{(1)^{2} - (4 \times 1 \times -1)}}{2 \times 1}$
 $x = -\frac{1 \pm \sqrt{(1)^{2} - (4 \times 1 \times -1)}}{2}$
 $x = -\frac{1 \pm \sqrt{5}}{2}$
 $x = -\frac{1.62}{2}$, $x = 0.62$

EXERCISE
(a)
$$5x^{2} - 5x + 1 = 0$$

 $q = 5$ $b = -5$ $c = 1$
 $x = \frac{5 \pm \sqrt{(-5)^{2} - (4 \times 5 \times 1)}}{2 \times 5}$
 $x = \frac{5 \pm \sqrt{25 - 20}}{10}$
 $x = \frac{5 \pm \sqrt{5}}{10}$
 $x = 0.28$, $2c = 0.72$
(b) $x^{2} = x + 5$
 $x^{2} - 2c - 5 = 0$
 $q = 1$ $b = -1$ $c = -5$
 $x = \frac{1 \pm \sqrt{(-1)^{2} - (4 \times 1 \times -5)^{2}}}{2 \times 1}$
 $2c = \frac{1 \pm \sqrt{21}}{2}$
 $2c = \frac{1 \pm \sqrt{21}}{2}$
 $x = -1.79$, $2c = 2.79$

QUADIATIC FORMULA EXERCISE
(3) (1) IST NUMBER 3C

$$2NO NUMBER 3C+1$$

PRODUCT 3C × (3C+1) = 3C(3C+1)
TOLO PRODUCT = 240
 $TOLO PRODUCT = 240$
 $SC (3C+1) = 240$
 $SC + 3C - 240 = 0$
(b) $q = 1$ $b = 1$ $c = -240$
 $x = -\frac{1 \pm \sqrt{10}(\frac{1}{2} + 4x) - 240}{2x}$
 $x = -\frac{1 \pm \sqrt{10}(\frac{1}{2} + 4x) - 240}{2x}$
 $x = -\frac{1 \pm \sqrt{10}(\frac{1}{2} + 4x) - 240}{2x}$
 $x = -\frac{1 \pm \sqrt{10}(\frac{1}{2} + 4x) - 240}{2}$
 $x = -\frac{1 \pm \sqrt{10}(\frac{1}{2} + 4x) - 240}{2}$
 $x = -\frac{1 \pm \sqrt{10}(\frac{1}{2} + 4x) - 240}{2}$
 $x = -\frac{1 \pm \sqrt{10}(\frac{1}{2} + 4x) - 240}{2}$
 $x = -\frac{1 \pm \sqrt{10}(\frac{1}{2} + 5x) - 30}{2}$ (b) $3C = -\frac{5 \pm \sqrt{(5)^2 - (4x)^2 - 30}}{2x}$
 $x^2 + 53C - 30 = 0$
 $a = 1$ $b = 5$ $c = -30$ $3C = -\frac{5 \pm \sqrt{12} - (-170)}{2}$
 $x = -\frac{5 \pm \sqrt{145}}{2}$
 $x = -\frac{5 \pm \sqrt{145}}{2}$

EQUATIONS

Basic Equations and Equations Involving Fractions

Objectives

★ solve linear equations:

 $\frac{1}{2}$ including brackets and unknown on both sides

★ solve quadratic equations

 $\sum_{i=1}^{N}$ where the denominators are numerical

 \star solve equations involving algebraic fractions:

 $\frac{1}{\sqrt{2}}$ where the unknown appears in the denominator

REFERENCE IN OTHER RESOURCES

Head Start: Algebraic Fractions - Page 13 (minimal coverage). Linear Equations - Pages 13-17. Alpha Workbooks:

LINEAR EQUATIONS REVIEW

LINETIC EQUATIONS REVIEW	
 If an <u>equation</u> has <u>sc</u> on <u>both sides</u>, <u>collect all the sc's on one side</u> to <u>solve</u> If an equation has <u>brackets</u>, <u>expand</u> the <u>brackets</u> to <u>remove then</u> 	
EXAMPLE Solue $3x + 1 = x + 7$ 3x + 1 = x + 7 2x + 1 = + 7 2x = 6 x = 3 Subtract x from both sides 0x - 8 = 25 10x - 5 = 25 10x = 30 x = 3 Expansion x = 3	EXAMPLE Solve $2(3c+3) = 43c$ Solution 2(3c+3) = 4x 23c+6 = 43c +6 = 23c 3 = 3c EXAMO (-23c) Both supers 3 = 3c
EQUATIONS INVOLVING FRACTIONS I Numbers on denominator. Remove fractions by multiplying all tems by terms on denominators. 'MOVE BOTTOM' TO 'TOP' OF 'ALL OTHER TEMS'	

EXAMPLE

Solve $\frac{32c+2}{5} = 4$

SOLUTION

 $\frac{3x+2}{5} = 4$ $3x+2 = 5\times 4$ 3x + 2 = 20 3x = 18 x = 6

EXAMPLE

Solve
$$\frac{3x+1}{2} + \frac{2x}{3} = 7$$

SOLUTION

3(3x+1) + 2x2x = 2x3x7 9x+3 + 4x = 42 13x + 3 = 42 13x = 39 x = 3

EQUATIONS INVOLVING FRACTIONS I Unknowns on denominator. Remove fractions by Multiplying all terms by terms on denominators. 'MOVE BOTTOM' TO 'TOP' OF 'ALL OTHER TERMS' EXAMPLE EXAMPLE Solve 10 = 2 Solve 30 = 12 SOLUTION SOL $\frac{10}{2^{c}} = 2$ 10 = 26×2 10 = 22 5 = 26 EXAMPLÉ Solve $\frac{16}{x+2} = 4$ SOLUTION $\frac{16}{x+2} = 4$ 16 = 4 (>(+2) 16 = 4x + 88 = 4x 2=×

$$x+1 \qquad x-2$$

$$\frac{30}{x+1} = \frac{12}{x-2}$$

$$30(x-2) = 12(x+1)$$

$$30x-60 = 12x + 12$$

$$18x - 60 = 12$$

$$18x = 72$$

$$x = \frac{72}{18} = 4$$

Exercise A: Basic Equation Review

Solve these **equations** to find the value of the unknown *x*.

- (1) 2x+1 = x+3 (2) 5x-3 = 2x+9
- (3) 7x 10 = 2x + 15 (4) 4x + 2 = 2x + 3
- (5) 3(2x+3) = 15 (6) 4(7x-3) = 44
- (7) 5(x-3) = x+1 (8) x+12 = 2(3-x)
- (9) 2x + 3(x 4) = 2x 3 (10) 7x 6 = 5x 2(x 1)

Exercise B: Equations involving Fractions (Unknown Numerator Only)

Solve these **equations** to find the value of the unknown *x*.

There are **fractions present**, start by removing these!

(1)	$\frac{x-1}{3} = 1$	(2)	$\frac{5x-1}{7} = 2$
(3)	$\frac{2x+1}{2} = 4$	(4)	$\frac{3x+8}{5} + \frac{x}{2} = 6$
(5)	$\frac{5x+7}{2} - \frac{x+5}{3} = 4$	(6)	$\frac{5x-3}{4} + \frac{x+5}{3} = 12$
(7)	$\frac{2x+3}{3} - \frac{2x-2}{5} = 3$	(8)	$\frac{7x+4}{2} + \frac{x+3}{5} = 10$
(9)	$\frac{x+1}{2} = \frac{3x-1}{5}$	(10)	$\frac{2x+3}{3} = \frac{4x+3}{5}$

Exercise C: Equations involving Fractions (Unknown on Denominator)

Solve these **equations** to find the value of the unknown *x*.

There are **fractions present** with the **unknown** in the **denominator**, start by removing these!

(1)	$\frac{20}{x} = 5$	(2)	$\frac{15}{x} = 5$
(3)	$\frac{32}{x} = 4$	(4)	$\frac{25}{x+3} = 5$

(5)
$$\frac{24}{5x+1} = 4$$
 (6) $\frac{14}{3x-7} = 7$

(7)
$$\frac{10}{x-1} = \frac{5}{2x-5}$$
 (8) $\frac{12}{x-2} = \frac{8}{x-3}$

 $(9) \quad \frac{4}{x+2} - \frac{3}{x} = \frac{1}{x-1}$

Equations - Equations and Equations Involving Fractions (Quadratic!)

EQUATIONS INVOLVING QUADRATICS

```
Some equations, possibly involving fractions, will
reduce to a <u>quadratic equation</u>.
Ensure you have <u>quadratic = 0</u>, then solve
(attempting to factorise first).
EXAMPLE
Solve x(x+4) = 2x+3
```

SOLUTION

 $x_{x}(x+4) = 2x+3$ $x^{2}+4x = 2x+3$ $x^{2}+4x - 2x - 3 = 0$ $x^{2}+2x - 3 = 0$ (x+3)(x-1) = 0 x = -3 = 1

EXAMPLE

Solve x+1= 6

SOLUTION

 $x + 1 = \frac{6}{x} \rightarrow x(x+1) = 6$ $x^{2} + x = 6$ $x^{2} + x - 6 = 0$ (x + 3)(x - 2) = 0 $x = -3 \quad x > 2$

EQUATIONS INVOLVING QUADRATICS

Some questions involving <u>algebraic</u> fractions reduce to <u>quadratiss</u>.

EXAMPLE

Solve
$$\frac{2}{x} = \frac{x}{x+4}$$

SOLUTION

$$\frac{2}{2} - \frac{x}{2+4}$$

MOVE BOTTOMS TO TOP OF EVERYWHERE ELSE!

$$2(x+4) = x^{x}$$

$$2x+8 = x^{2}$$

$$0 = x^{2} - 2x - 8$$

$$0 = (x-4)(x+2)$$

$$x = 4 - x = -7$$

EQUATIONS WUDLVING QUADRATICS

Some equations involving <u>algebraic</u> fractions reduce to <u>quadratics</u>.

EXAMPLE

Solve
$$\frac{3}{x+s} + \frac{2}{x-1} = 1$$

SOLUTION

$$\frac{3}{x+5} + \frac{2}{x-1} = 1$$

$$3(x-1) + 2(x+5) = i(x+5)(x-1)$$

$$3x-3 + 2x + 10 = x^{2} + 4x - 5$$

$$0 = x^{2} + 4x - 5$$

$$0 = x^{2} - x - 12$$

$$0 = (x+3)(x-4)$$

$$x = -3 \quad x = 4$$

Equations - Equations and Equations Involving Fractions (Quadratic!)

Exercise D: Equations that Reduce to Quadratics (Including Algebraic Fractions)

Solve these **equations** to find the value of the unknown *x*.

All reduce to quadratics, if there are fractions present start by removing these!

(2) x(x-8) - 2(x-12) = 0(1) x(x+2) = 2x+9(4) $2x + \frac{3}{x} = 7$ (3) $x+2=\frac{15}{x}$ (6) $\frac{3x+2}{5x} = \frac{4}{x+3}$ (5) $\frac{4}{x+3} = \frac{x+1}{2x}$ (8) $\frac{4}{x} - \frac{2}{x+3} = 1$ $(7) \quad \frac{x}{4} = \frac{2x}{r+7}$ (9) $\frac{6}{r+4} + \frac{4}{r-2} = 2$ (10) $\frac{5}{x-2} - \frac{2}{x} = 2$ (11) -= 4

$$\frac{7}{x+3} + \frac{2}{3x+1} = 1$$
(12) $\frac{5}{x+1} + \frac{3}{2x}$

EQUATIONS
 Exercise A

 (0)
$$2x+1=x+3$$
 (2) $5x-3 = 2x+9$
 $x+1=3$
 $3x-3=9$
 $x=2$
 $3x = 12$
 $5x = 10 = 2x+15$
 (2) $4x+2=2x+3$
 $5x = 15$
 $2x+2=3$
 $5x = 25$
 $2x = 1$
 $x = 5$
 $x = 1/2$

 (3) $3(2x+3) = 15$
 (2) $4(7x-3)=44$
 $6x = 6$
 $28x = 56$
 $x = 1$
 $x = 2$

 (3) $3(2x+3) = x+1$
 (2) $x+12 = 2(3-2c)$
 $5x-15 = x+1$
 $x = 12$
 $5x - 15 = x+1$
 $x = 12$
 $5x - 15 = x+1$
 $3x + 12 = 2(3-2c)$
 $5x - 15 = x+1$
 $3x + 12 = 6$
 $4x = 16$
 $3x = -2$
 $3x + 12 = 16$
 $3x = -2$
 $3x - 12 = 2x - 3$
 $7x - 6 = 5x - 2(x-1)$
 $7x - 6 = 5x - 1x + 2$
 $7x - 6 = 5x - 2(x-1)$
 $7x - 6 = 5x - 1x + 2$
 $7x - 6 = 2$
 $3x - 12 = -3$

6

Ζ

8

x = 2

EQUATIONS	EXERC	LISE B
$\bigcirc \frac{x-1}{3} = 1$	$2 \frac{5x-1}{7} = 2$	$3 \frac{2x+1}{2} = 4$
$\infty - 1 = 3 \times 1$	506-1 = 7×2	$23c + 1 = 2 \times 4$
$\mathcal{X} = 1 = \mathcal{S}$	Sx - 1 = 14	2x + 1 = 8
	$S_{2}C = 15$	2x = 7
	x = 3	x = 7/2

$$\begin{array}{rcl} (\textcircled{+}) & \frac{3x+8}{5} + \frac{3x}{2} = 6 \\ \hline & 2(3x+8) + 5x = 5 \times 2 \times 6 \\ & 6x + 16 + 5x = 60 \\ & 11x + 16 = 60 \\ & 11x = 44 \\ & x = 24 \end{array}$$

$$\begin{array}{l} \textcircled{6} \quad \underbrace{5x-3}_{4} & + & \underbrace{x+5}_{3} = 12 \\ 3(5x-3) & + & 4(3c+5) = 4 \times 3 \times 12 \\ 15xc - 9 & + & 43c+20 = & 144 \\ 19x & + & 11 = & 144 \\ 19x & + & 11 = & 144 \\ 19x & = & 133 \\ x & = & 7 \end{array}$$

(s)
$$\frac{5x+7}{2} - \frac{x+5}{3} = 4$$

 $3(5x+7) - 2(x+5) = 2 \times 3 \times 4$
 $15x + 21 - 2x - 10 = 24$
 $13x + 11 = 24$
 $13x = 13$
 $x = 1$

$$\begin{array}{rcl} \widehat{P} & \frac{2x+3}{3} & -\frac{2x-2}{5} & = 3\\ & & 5(2x+3) - 3(2x-2) & = 3x5x3\\ & & 10x+15 & -6x+6 & = 4x5\\ & & 4x+21 & = 4x5\\ & & 4xx+21 & = 4x5\\ & & 4xx & = 2x4\\ & & 2x & = 24\\ & & 2x & = 6\end{array}$$

(8) $\frac{7x+4}{2} + \frac{x+3}{5} = 10$ (9) $\frac{x+1}{2} = \frac{3x-1}{5}$ $5(7x+4) + 2(x+3) = 2 \times 5 \times 10$ $5(x+1) = 2(3x-1) \rightarrow 3(=7)$ 35x + 20 + 25c + 6 = 100 (10) $\frac{25c+3}{3} = \frac{47c+3}{5}$ 37x = 74 5(2x+3) = 3(4x+3)x = 2

EQUATIONS	Exerc	CISE C
$\begin{array}{c} (1) \frac{20}{x} = 5 \\ \hline \end{array}$	$\begin{array}{c} \hline 2 \\ \hline -2 \\ \hline -$	$3) \frac{32}{24} = 4$
20 = 5,6	15 = 52	32 = 476
4 = 26	3 = > C	8 = >c
(a) $\frac{25}{x+3} = 5$	$(5) \frac{24}{5x+1} = 4$	$6 \frac{14}{32 - 7} = 7$
25=5(>c+3)	24 = 4(5x+1)	14 = 7(33-7)
25 = 526+15	24 = 20x+4	14 = 212 - 49
10 = 5x	20 = 20,0	63 = 212
2=26	\ <i>=</i> >C	3 = > C

 $\begin{array}{rcl} \widehat{P} & \frac{10}{x-1} & = \frac{5}{2x-5} & & & & & \\ \widehat{S} & \frac{12}{2x-2} & = \frac{8}{x-3} \\ 10(2x-5) & = 5(x-1) & & & & \\ 12(x-3) & = 8(x-2) \\ 20x-50 & = 5x-5 & & & & \\ 12x-36 & = 8x-16 \\ 15x & = 45 & & & \\ 4x-36 & = -16 \\ x & = 3 & & & \\ x & = 5 \end{array}$

(1)
$$\frac{4}{x+1} - \frac{3}{x} = \frac{1}{x-1}$$

 $4(x-1)x - 3(x+1)(x-1) = (x+1)x$
 $4(x^{2}-x) - 3(x^{2}+x-2) = x^{2}+2x$
 $4x^{2}-4x - 3x^{2}-3x+6 = x^{2}+2x$
 $x^{2} - 7x + 6 = x^{2} + 2x$
 $-7x + 6 = 2x$
 $x^{2} - \frac{2}{3}$

EQUATIONS

- () x(x+2) = 2x+9 $x^{2}+2x = 2x+9$ $x^{2} - 9 = 0$ (x+3)(x-3) = 0x = -3 x = 3
- (3) $x + 2 = \frac{15}{50}$ x(x+2) = 15 $x^2 + 2x = 15$ $x^2 + 2x - 15 = 0$ (x-3)(x+5) = 0x = 3 x = -5

(5)
$$\frac{4}{x+3} = \frac{x+1}{25c}$$

 $4x^{2}5c = (5c+3)(x+1)$
 $8x = x^{2}+4x+3$
 $0 = x^{2}-45c+3$
 $0 = (x-1)(x-3)$
 $x=1 = 5c=3$

$$(7) \quad \frac{x}{4} = \frac{2x}{3c+7}$$

$$\chi(13c+7) = 23c \times 4$$

$$x^{2} + 7x = 83c$$

$$x^{2} - 3c = 0$$

$$3c(1x-1) = 0$$

$$x = 0, 3c = 1$$

EXERCISE D

(2) x(x-8) - 2(x-12) = 0 $x^{2} - 8_{22} - 2_{22} + 2_{4} = 0$ $x^{2} - 10x + 2_{4} = 0$ (x - 4)(x - 6) = 0x = 4 x = 6

$$(\bigcirc 2) + \frac{3}{x} = 7$$

 $2x^{2} + 3 = 7x^{2}$ $2x^{2} - 7x + 3 = 0$ (2x - 1)(x - 3) = 0 $x = \frac{1}{2}$ x = 3

(6)
$$\frac{3x+2}{5x} = \frac{4}{x+3}$$

 $(3x+2)(x+3) = 4 \times 5x$
 $3x^2 + 11x + 6 = 20x$
 $3x^2 - 9x + 6 = 0$
 $3(x^2 - 3x + 2) = 0$
 $3(x-1)(x-2) = 0$
 $x = 1$ $2(-1)$

$$\frac{EQUATIONS}{x} = 1$$
(8) $\frac{4}{x} - \frac{2}{x+3} = 1$
(4)(x+3) - 2x = 1x(x+3)
(4)(x+3) - 2x = x^2 + 3x
(4)(x+12 - 2x = x^2 + 3x)
(5) = x^2 + 3x
(5) = x^2 + 3x
(5) = (x + 4)(x-3)
(5) =

$$\frac{EXENCISE D}{G}$$

$$\frac{6}{x+4} + \frac{4}{3c-2} = 2$$

$$6(3c-2) + 4(3c+4) = 2(3c+4)(3c-1)$$

$$63c-12 + 4x+16 = 2x^{2} + 43c - 16$$

$$103c + 4 = 2x^{2} + 43c - 16$$

$$103c + 4 = 2x^{2} + 43c - 16$$

$$0 = 2x^{2} - 63c - 20$$

$$0 = 2(3c^{2} - 33c - 10)$$

$$0 = 2(3c^{2} - 33c - 10)$$

$$0 = 2(3c-5)(c+2)$$

$$2c=5 = 2(3c-7)$$

$$(10) \frac{5}{x-2} - \frac{2}{3c} = 2$$

$$5x - 2(3c-2) = 23c(3c-2)$$

$$5x - 2x + 4 = 23c^{2} - 43c$$

$$3x + 4 = 23c^{2} - 43c$$

$$0 = 23c^{2} - 73c - 4$$

$$0 = (2x+1)(x-4)$$

$$x = \frac{1}{2} - \frac{5}{24} + \frac{3}{24} = 4$$

(i)
$$\frac{7}{243} + \frac{2}{3241} = 1$$

 $7(3x+1) + 2(x+3) = 1(x+3)(3241)$
 $21247 + 2x + 6 = 3x^{2} + 10243$
 $23x + 13 = 3x^{2} + 10243$
 $0 = 3x^{2} - 13x - 10$
 $0 = (x-5)(3x+2)$
 $x = 5 + 3x = -\frac{2}{7}$

$$\frac{5}{x+1} + \frac{3}{25c} = 4$$

$$5 \times 2x + 3(x+1) = 4 \times 25((x+1))$$

$$10x + 3x + 3 = 85c^{2} + 85c$$

$$13x + 3 = 8x^{2} + 85c$$

$$0 = 8x^{2} - 5x - 3$$

$$(2c-1)(82c+3)=0$$

 $2c=1$ $2c=-3/8$

FRACTIONS

Numerical and Algebraic Fractions

Objectives

- \star be confident with adding, subtracting, multiplying and dividing fractions
- \star know that dividing by a fraction is the same as multiplying by its reciprocal
- \star substitute fractions and negative numbers into formulae
- \star simplify a single algebraic fraction by cancelling common factors
 - \swarrow including when the numerator/denominator need to be factorised first
- \star add or subtract algebraic fractions fully simplifying the result
 - multiply or divide algebraic fractions fully simplifying the result

REFERENCE IN OTHER RESOURCES

Head Start:Fractions - Pages 3-5; Algebraic Fractions - Pages 12-14.Alpha Workbooks:Fractions - Pages 3-5; Substitution - Pages 10-12.

EMIXED NUMBERS AND IMPROPER FRACTIONS }

MIXED NUMBER	IMPROPER FRACTION (top-heavy, vulgar)
24	<u>5</u> 2
4	9 5
6 2	<u>20</u> 3
3 7:	<u>37</u> 10

know how to <u>convert</u> between <u>mixed numbers</u> and <u>improper fractions</u>.

Know that for a lot of algebraic work, the <u>improper fraction</u> is the most useful form.

EXAMPLE	EXAMPLE
Write 375 as a top heavy fraction	Write $\frac{29}{3}$ as a mixed number
SOLUTION	SOLUTION
3 = ? - same denominator	how many 3's in 20 - 6 remainder is 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{20}{3} = 6\frac{2}{3}$ - remainder
10	Full ones

EMULTIPLYING FRACTIONS 3

• write an	y <u>mixed nu</u>	mbers as improper Practions
· write int	egers as th	emselves over one
· multiply	by doing	topx top bottomx bottom
EXAMPLE	~->	SOLUTION
$\frac{2}{3} \times \frac{3}{4}$		$\frac{2}{3} \times \frac{3}{4} = \frac{2 \times 3}{3 \times 4} = \frac{6}{12} = \frac{1}{2}$
EXAMPLÉ		SOLUTION
4 × 12		$\frac{4}{5} \times \frac{1}{2} = \frac{4 \times 1}{5 \times 2} = \frac{4}{10} = \frac{2}{5}$
EXAMPLE		SOLVION
5 × 2 15		$5 \times \frac{2}{15} = \frac{5}{1} \times \frac{2}{15} = \frac{5 \times 2}{1 \times 15} = \frac{10}{15}$
		= 2 3
EXAMPLE	-•	SOLUTION
13×41		$\left \frac{2}{3} \times 4\frac{1}{2} - \frac{5}{3} \times \frac{9}{2}\right $
		$= \frac{5 \times 9}{3 \times 2} = \frac{45}{6} = \frac{15}{2} = \frac{71}{2}$

Note:

With more experience, some cancelling can be done mid-calculation to avoid large numbers!

when dealing	, with mix	ed numbers.
EXAMPLE	>	SOLUTION
4 + 10		LCM 5,10 = 10
		$\frac{4x^2}{5x^2} + \frac{1}{10} = \frac{8}{10} + \frac{1}{10} = \frac{9}{10}$
EXAMPLE	→	SOLUTION
$\frac{2}{3} + \frac{1}{2}$		LCM 3, 2 = 6
		$\frac{2^{12}}{3_{x2}} + \frac{1^{x3}}{2_{x3}} = \frac{4}{6} + \frac{3}{6} = \frac{7}{6} \text{ or } \left \frac{1}{6} \right ^{\frac{1}{2}}$
EXAMPLE	•	SOLUTION
$\frac{2}{3} - \frac{1}{4}$		LCM 3, 4 = 12
		$\frac{2^{*4}}{3_{*4}} - \frac{1^{*3}}{4_{*3}} = \frac{8}{12} - \frac{3}{12} = \frac{5}{12}$
EXAMPLE	→	SOLUTION
134+25		LCM 4,5=20
		$\left \frac{3}{4}+2\frac{4}{5}=\frac{3}{20}\frac{15}{20}+\frac{16}{20}=\frac{331}{20}\right $ whole done
		but 31 = 11 . ANSWER 4 20
EDIVIDING FILM	Arizad an	aller in income for the
· write inte	aers as th	enceives as improper factions
• bo divide	→ flip t	re second fraction upsich
	down	
	then y	multiply the fractions
EXAMPLE		SOLUTION
$\frac{1}{2}$ $\frac{3}{5}$		$\frac{1}{2} \div \frac{3}{5}$
		$\frac{1}{2} \times \frac{5}{3} = \frac{1 \times 5}{2 \times 3} = \frac{5}{6}$
EXAMPLE	->	SOLUTION
$\frac{3}{4} \div 2$		$\frac{3}{4} \div \frac{2}{1}$
		$\frac{3}{4} \times \frac{1}{2} = \frac{3 \times 1}{4 \times 2} = \frac{3}{8}$
EXAMPLE	→	Securia

[ADDING AND SUBTRACTING FRACTION]

must have a common denominator.

When adding or subtracting fractions, you

Do the 'whole' and 'fraction parts' seperately

 $\frac{13}{5} \div \frac{7}{4}$ $\frac{13}{5} \times \frac{4}{7} = \frac{13\times4}{5\times7} \div \frac{52}{35} \div \frac{17}{35}$

DIVIDING BY A FRACTION IS THE SAME AS MULTIPLYING BY ITS RECIPROCAL!

23:13

Exercise A: Mixed Fraction Arithmetic (Review)

As part of the course you will need to be very confident in working with fractions and negative numbers.

The work here focuses on fractions.

Fractions more than a whole can be written either as **mixed numbers** or **improper** (top heavy) fractions.

For each fraction below, give the equivalent fraction in the form other than that presented.

(1) 1	$\frac{2}{3}$	(2)	$6\frac{1}{4}$	(3)	$2\frac{4}{5}$
-------	---------------	-----	----------------	-----	----------------

 $(5) \frac{31}{8}$ $(6) \frac{15}{2}$ $(4) \frac{27}{10}$

When adding or subtracting fractions you need to ensure that you have a common denominator.

Complete these fraction addition and subtraction questions, simplifying if possible.

(7)	$\frac{1}{2} + \frac{2}{5}$	(8)	$\frac{9}{10} - \frac{2}{3}$	(9)	$\frac{3}{4} + \frac{5}{7}$
(10)	$1\frac{1}{3} + 4\frac{1}{4}$	(11)	$7\frac{5}{6} - 3\frac{1}{8}$	(12)	$5\frac{2}{5}-2\frac{2}{3}$

When multiplying fractions:

- write any mixed numbers as improper fractions -
- write integers as themselves over one
- multiply the top numbers together and the bottom numbers together -

Complete these fraction multiplication questions (simplify the result if possible).

(13)	$\frac{2}{3} \times \frac{3}{7}$	(14)	$\frac{4}{9} \times \frac{7}{10}$	(15)	$\frac{1}{2} \times \frac{3}{5}$

(17) $5 \times 3\frac{1}{4}$ (18) $2\frac{3}{5} \times 4\frac{1}{9}$ $(16) \quad \frac{3}{4} \times 1\frac{1}{3}$

When dividing fractions:

. .

- write any **mixed numbers** as **improper fractions**
- write integers as themselves over one
- flip the second fraction upside down then multiply the fractions _

Complete these fraction division questions (simplify the result if possible).

(20) $\frac{7}{12} \div \frac{3}{4}$ (19) $\frac{3}{10} \div \frac{1}{2}$ (21) $\frac{1}{3} \div 2 = \frac{1}{3} \div \frac{2}{1}$ (23) $\frac{\frac{3}{4}}{2}$ (24) $\frac{6}{\frac{2}{2}}$ (22) $2\frac{1}{2} \div 3\frac{2}{3}$

Exercise A: Mixed Fraction Arithmetic (Review)

As part of the course you will need to be very confident in working with **fractions** and **negative numbers**.

The work here focuses on fractions.

Complete these statements about division involving fractions:

- (25) dividing by $\frac{1}{2}$ is the same as multiplying by
- (26) dividing by $\frac{1}{5}$ is the same as multiplying by
- (27) dividing by $\frac{2}{3}$ is the same as multiplying by
- (28) dividing by 2 is the same as multiplying by

Find half of each of these fractions:

(29)	$\frac{4}{5}$	$(30) \frac{3}{7}$	(31)	$2\frac{3}{4}$

Work out these calculations involving fractions to powers.

- (32) $\left(\frac{1}{2}\right)^2$ (33) $\left(\frac{3}{4}\right)^2$ (34) $\left(\frac{2}{5}\right)^3$
- $(35) \quad \left(\frac{3}{10}\right)^4 \qquad (36) \quad \left(1\frac{2}{3}\right)^3 \qquad (37) \quad \left(2\frac{1}{2}\right)^2$

Exercise B: Substitution into Formulae

For each linear function given, find the *y*-coordinate given the *x*-coordinate.

(1) Find the *y*-value on the line graph defined by

$$y = 2x - 3$$

Given the following *x*-values:
(a) 2 (b) -4 (c) $\frac{1}{2}$ (d) $-\frac{3}{8}$
(2) Find the *y*-value on the line graph defined by
 $y = 2 - x$
Given the following *x*-values:
(a) 3 (b) -5 (c) $\frac{3}{2}$ (d) $-\frac{3}{2}$
(3) Find the *y*-value on the line graph defined by
 $y = 7 - \frac{3}{2}x$
Given the following *x*-values:
(a) 4 (b) -3 (c) $\frac{3}{2}$ (d) $-\frac{1}{4}$
For each quadratic function given, find the *y*-coordinate given the *x*-coordinate.
(4) Find the *y*-value on the quadratic curve defined by
 $y = x^2 + 2x$
Given the following *x*-values:

(a) 4 (b) -2 (c) $\frac{1}{2}$ (d) $-\frac{1}{4}$

(5) Find the *y*-value on the quadratic curve defined by

$$y = x^2 - 3x + 5$$

Given the following *x*-values:

(a) 5 (b) -3 (c) $\frac{2}{3}$ (d) $-\frac{1}{2}$

(6) Find the *y*-value on the quadratic curve defined by

$$y = 4x^2 - x - 7$$

Given the following *x*-values:

(a) 2 (b) -1 (c) $\frac{3}{2}$ (d) $-\frac{3}{2}$

Exercise B: Substitution into Formulae

For each formula given, substitute in the given values.

(7) Find the *y*-value on the cubic curve defined by

$$y = 4x^{3}$$

Given the following *x*-values:

- (a) 5 (b) -3 (c) $\frac{2}{5}$ (d) $-\frac{1}{4}$
- (8) Find the *y*-value on the cubic curve defined by

$$y = x^3 + 5x^2 - 2x$$

Given the following *x*-values:

(a) 10 (b) -2 (c) $\frac{3}{4}$ (d) $-\frac{1}{2}$

Fractions - Algebraic Fractions

ESIMPLIFYING ALGEBRAIC FRACTIONS		ELOWEST COMMON MULTIPLES		
I deas from <u>numerica</u>	The lowest common nultiple (LCM) should			
to <u>algebraic</u> fractions.		be used to obtain a <u>common denominator</u>		
when <u>simplifying algebraic fractions</u> , concel common factors on the numerator and denominator		when <u>add</u>	ing / subtrac	Ting Machions.
(these <u>common factors</u> other <u>factors</u> !).	must be <u>multiplied</u> by	TERM ONE	TEAM TWO	LOWEST COMMON MULTIPLE (LCM)
EXAMPLE	SOLUTION		254	224 *
Simplify 6pt	$\frac{6}{10} \frac{p \times p \times p}{p \times p} = \frac{3 p^2}{5}$		Ь	ab
	cancel numbers as well	2p	9_	2pg
	on this question type.			
EXAMPLE -	SOLUTION	4.20	23	4×y *
Simplify $\frac{2x(3c+1)}{x^2(3c+1)}$	$\frac{2\mathscr{L}(2\mathcal{H})(2\mathcal{H})}{\mathscr{L}\times(2\mathcal{H})} = \frac{\mathcal{L}(2\mathcal{H})}{2\mathcal{L}}$	(x+1)	sс	$\mathcal{T}(x+1)$
EXAMPLE -	• $\underline{Solution}$	(xc-5)	(x+3)	(><-5)(><+3)
$\frac{4x+6}{6x+12}$	$\frac{42+6}{6\times +12} = \frac{4(2+2)}{6(2+2)} = \frac{4}{6} - \frac{2}{3}$			
EXAMPLE	SOLUTION	multiplying t	he terms tog	ethar.
Simplify <u>sc-3</u>	$\frac{3c-3}{x^{2}-q} = \frac{3c+3}{(x+3)(x+3)} = \frac{1}{3c+3}$	This will no	t always b	e the LCM as #
Note:		common for	tor between	the tems).
In more difficult qu	estions (like the last two)			
you will have to fac	storise the numerator/			
ADDING / SUBTRACTING	ALGEBRAIC FRACTIONS 3	EADDING / SUBTR	LACTING ALGEB	MAIL FRACTIONS 3
EADDING/SUBTRACTING Ideas from <u>numerical</u>	ALGEBRAIC FRACTIONS 3 work also apply to algebraic fractions	EADDING / SUBTR	ZACTING ALGEB	MAIC FRACTIONS 3
EADDING / SUBTRACTING Ideas from <u>numerical</u> Find a <u>common denor</u>	ALGEBRAIC FRACTIONS 3 work also apply to algebraic fractions mingtor before adding or	ADDING / SUBTR	CACTING ALGEB	MAIC FRACTIONS 3
EADDING/SUBTRACTING Ideas from <u>numerical</u> Find a <u>common denor</u> <u>subtracting fractions</u> . (Look for the <u>LCM</u> or	ALGEBRAIC FRACTIONS 3 work also apply to algebraic fractions minator before <u>adding</u> or f all <u>denominators</u> present).	EADDING -/ SUBTR	CACTING ALGEB	MAIL FRACTIONS 3
EXAMPLE	ALGEBRAIC FRACTIONS } <u>work</u> also apply to algebraic fractions <u>minstor</u> before <u>adding</u> or f all <u>denominators</u> present). <u>SOLUTION</u> LCM = 12	EXAMPLE	ALGEB	SOLUTION LCM = 25C
EADDING/SUBTRACTING Ideas from <u>Numerical</u> Find a <u>common denor</u> <u>subtracting fractions</u> . (Look for the <u>LCM</u> or <u>ExAMPLE</u> <u>2.5c</u> + <u>3c</u> <u>4</u>	ALGEBRAIC FRACTIONS 3 <u>work</u> also apply to algebraic fractions <u>minator</u> before <u>adding</u> or f all <u>denominators</u> present). <u>Socution</u> Law = 12 $\frac{23c}{3} + \frac{32}{4} = \frac{83c}{12} + \frac{33c}{12} = \frac{113c}{12}$	$\frac{E \times AMPLE}{3} + \frac{1}{25C}$	ALGEB	SOLUTION LCM = $2xc$ $\frac{3}{x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2xc} = \frac{7}{2xc}$
EXAMPLE	ALGEBRAIC FRACTIONS 3 Work also apply to algebraic fractions minator before adding or f all denominators present). <u>Solution</u> Law = 12 $\frac{232}{3} + \frac{32}{4} = \frac{832}{12} + \frac{332}{12} = \frac{1132}{12}$ <u>Solution</u> Law = 6	EXAMPLE 3 + 1 2 EXAMPLE EXAMPLE	ACTING ALGEB	SOLUTION LCM = $2xc$ $\frac{3}{x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2xc}$ SOLUTION LCM (x+1)(x-4)
EXAMPLE $\frac{1}{3} + \frac{2x-1}{2}$	ALGEBRAIC PRACTIONS 3 <u>work</u> also apply to algebraic fractions <u>minator</u> before <u>adding</u> or f all <u>denominators</u> present). <u>Solution</u> Law = 12 $\frac{23c}{3} + \frac{3c}{4} = \frac{83c}{12} + \frac{33c}{12} = \frac{113c}{12}$ <u>Solution</u> Law = 6 $\frac{3c+1}{3} + \frac{23c-1}{2} = \frac{2(3c+1)}{6} + \frac{3(2n-1)}{6}$	$\frac{E \times A^{MPLE}}{3} + \frac{1}{25c}$ $\frac{4}{2c+1} + \frac{2}{x-4}$	ALGEB	SOLUTION L(M = 2x) $\frac{3}{2x} + \frac{1}{2x} = \frac{6}{20} + \frac{1}{20} = \frac{7}{200}$ SOLUTION L(M (x+1)(x-4)) $\frac{4}{2x+1} + \frac{2}{2-4}$
EADDING -/ SUBTRACTING Ideas from <u>numerical</u> Find a <u>common denor</u> <u>subtracting fractions</u> . (Look for the <u>LCM</u> of <u>Example</u> \rightarrow <u>Zzc</u> + <u>2c</u> <u>3</u> + <u>2c</u> <u>x+1</u> + <u>2x-1</u> <u>2</u>	ALGEBRAIC PRACTIONS 3 <u>work</u> also apply to algebraic fractions <u>minstor</u> before <u>adding</u> or f all <u>denominators</u> present). <u>Solution</u> Law = 12 $\frac{23c}{3} + \frac{3c}{4} = \frac{83c}{12} + \frac{3x}{12} = \frac{113c}{12}$ <u>Solution</u> Law = 6 $\frac{3c+1}{3} + \frac{23c-1}{2} = \frac{2(3c+1)}{6} + \frac{3(23c-1)}{6}$ $= \frac{2(3c+1)+3(23c-1)}{6}$	$\frac{E \times AMPLE}{3} + \frac{1}{22C}$ $\frac{3}{2C} + \frac{1}{22C}$ $\frac{E \times AMPLE}{4} + \frac{2}{2C+1}$	ALGEB	$\frac{3}{2x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x^2}$ $\frac{3}{2x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x^2}$ $\frac{501 \sqrt{10N}}{2x^2} + \frac{2}{2x^2} + \frac{1}{2x^2} = \frac{7}{2x^2}$ $\frac{4(x-4)}{(x-4)} + \frac{2(x+1)}{(x^2+1)(x^2+4)}$
EADDING -/ SUBTRACTING Ideas from <u>numerical</u> Find a <u>common denor</u> <u>subtracting fractions</u> . (Look for the <u>LCM</u> or <u>Example</u> $=$ $\frac{22c}{3} + \frac{2c}{4}$ <u>Example</u> $=$ $\frac{x+1}{3} + \frac{2x-1}{2}$	ALGEBRAIC FRACTIONS 3 <u>work</u> also apply to algebraic fractions <u>minstor</u> before <u>adding</u> or f all <u>denominators</u> present). <u>Solution</u> Law = 12 $\frac{2x}{3} + \frac{7x}{4} = \frac{8x}{12} + \frac{3x}{12} = \frac{11x}{12}$ <u>Solution</u> Law = 6 $\frac{3x+1}{3} + \frac{23x-1}{2} = \frac{2(3x+1)}{6} + \frac{3(2x-1)}{6}$ $= \frac{2(3x+1)+3(2x-1)}{6}$ $= \frac{2x+2+6x-3}{6}$	$\frac{E \times AMPLE}{3 \times + \frac{1}{22c}}$ $\frac{3}{2c} + \frac{1}{22c}$ $\frac{E \times AMPLE}{4 \times + 1} + \frac{2}{2c}$	ALGEB	$\frac{3}{2} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{3}{x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{501 \sqrt{10N}}{4x+1} + \frac{2}{x-4}$ $\frac{4(x-4)}{(x+1)(x-4)} + \frac{2(x+1)}{(x+1)(x-4)}$ $\frac{4(x-4)+2(x+1)}{(x+1)(x-4)} + \frac{2(x+1)}{(x+1)(x-4)}$
EADDING -/ SUBTRACTING I deas from <u>numerical</u> Find a <u>common denor</u> <u>subtracting fractions</u> . (Look for the <u>LCM</u> or <u>Example</u> $\frac{2jc}{3} + \frac{2c}{4}$ <u>Example</u> $\frac{x+1}{3} + \frac{2x-1}{2}$	ALGEBRAIC FRACTIONS 3 <u>work</u> also apply to algebraic fractions <u>minetor</u> before <u>adding</u> or f all <u>denominators</u> present). <u>Solution</u> Law = 12 $\frac{22x}{3} + \frac{2x}{4} = \frac{8x}{12} + \frac{32x}{12} = \frac{112x}{12}$ <u>Solution</u> Law = 6 $\frac{x+1}{3} + \frac{23x-1}{2} = \frac{2(3x+1)}{6} + \frac{3(2x-1)}{6}$ $= \frac{2(3x+1)+3(2x-1)}{6}$ $= \frac{2x+2+6x-3}{6}$	$\frac{E \times AMPLE}{3 \times + \frac{1}{25c}}$ $\frac{3}{2c} + \frac{1}{25c}$ $\frac{E \times AMPLE}{4 \times + 1} + \frac{2}{2c}$	ALGEB	$\frac{3}{2} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{3}{x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{3}{2x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{501 \sqrt{10N}}{(x+1)(x-4)} - Lcm((x+1)(x-4))$ $\frac{4}{(x+1)} + \frac{2}{x-4}$ $\frac{4(x-4)}{(x+1)(x-4)} + \frac{2(x+1)}{(x+1)(x-4)}$ $\frac{4(x-4) + 2(x+1)}{(x+1)(x-4)}$ $\frac{4(x-16 + 2x + 2)}{(x+1)(x-4)}$
EXAMPLE $E \times AMPLE$ $E \times AMPLE$ A = 2x - 1 2x - 1	ALGEBRAIC FRACTIONS 3 Work also apply to algebraic fractions minator before adding or f all denominators present). SOLUTION Law = 12 $\frac{232}{3} + \frac{32}{44} = \frac{832}{12} + \frac{332}{12} = \frac{1132}{12}$ SOLUTION Law = 6 $\frac{32+1}{3} + \frac{232-1}{2} = \frac{2(32+1)}{6} + \frac{3(23-1)}{6}$ $= \frac{2(32+1)+3(23-1)}{6}$ $= \frac{32x+2}{6} + 632-3$ $= \frac{8x-1}{6}$	$\frac{E \times AMPLE}{3 \times + \frac{1}{22}}$ $\frac{E \times AMPLE}{4 \times + 1} + \frac{2}{2 \times - 4}$		$\frac{3}{2x+1} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{3}{x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{3}{2x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{50L\sqrt{10N}}{4} - \frac{1}{2x} + \frac{2}{2x}$ $\frac{4}{2x+1} + \frac{2}{x-4}$ $\frac{4}{(x-4)} + \frac{2}{(x+1)(x-4)}$ $\frac{4}{(x-4) + 2(x+1)}$ $\frac{4}{(x+1)(x-4)} + \frac{2(x+1)}{(x+1)(x-4)}$ $\frac{4x-16+2x+2}{(x+1)(x-4)}$ $\frac{2x-14}{(x+1)(x-4)}$
EXAMPLE $E \times AMPLE$ $E \times AMPLE$ $E \times AMPLE$ $2 \times 2 - 5 - x - 1$	ALGEBRAIC FRACTIONS 3 <u>work</u> also apply to algebraic fractions <u>minstor</u> before <u>adding</u> or f all <u>denominators</u> present). <u>Socution</u> Law = 12 $\frac{23c}{3} + \frac{3c}{44} = \frac{83c}{12} + \frac{33c}{12} = \frac{113c}{12}$ <u>Socution</u> Law = 6 $\frac{3c+1}{3} + \frac{23c-1}{2} = \frac{2(3c+1)}{6} + \frac{3(23c-1)}{6}$ $= \frac{2(3c+1) + 3(23c-1)}{6}$ $= \frac{2x+2+63c-3}{6}$ <u>Socution</u> Law = 12 $\frac{3x-1}{6}$	EXAMPLE $\frac{3}{x} + \frac{1}{25c}$ $\frac{4}{2c+1} + \frac{2}{x-4}$	ALGEB	$\frac{501}{2} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{3}{x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{501}{2x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{501}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{4(x-4)}{(x+1)(x-4)} + \frac{2(x+1)}{(x+1)(x-4)}$ $\frac{4(x-4)}{(x+1)(x-4)} + \frac{2(x+1)}{(x+1)(x-4)}$ $\frac{4(x-16+2x+2)}{(x+1)(x-4)}$ $\frac{4x-16+2x+2}{(x+1)(x-4)}$ $\frac{2x-14}{(x+1)(x-4)}$ $\frac{2(x-7)}{2(x-7)}$
Example $\frac{2x-5}{4} - \frac{x-1}{4}$	ALGEBRAIC FRACTIONS 3 Work also apply to algebraic fractions minstor before adding or f all denominators present). Solution Law = 12 $\frac{2x}{3} + \frac{7x}{4} = \frac{8x}{12} + \frac{3x}{12} = \frac{11x}{12}$ Solution Law = 6 $\frac{x+1}{3} + \frac{2x-1}{2} = \frac{2(2x+1)}{6} + \frac{3(2x-1)}{6}$ $= \frac{2(2x+1)+3(2x-1)}{6}$ $= \frac{2x+2+6x-3}{6}$ $= \frac{8x-1}{6}$ Solution Law = 12 $\frac{2x-2}{6} - \frac{x-1}{3} = \frac{3(2x-5)-4(x-1)}{12}$ = 3(2x-5)-4(x-1)	$\frac{E \times AMPLE}{\frac{3}{x} + \frac{1}{25c}}$ $\frac{E \times AMPLE}{\frac{4}{x+1} + \frac{2}{x-4}}$	ALGEB	$\frac{3}{2x+1} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{3}{x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{3}{2x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{501 \times 100}{4} + \frac{2}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{4(x-4)}{(x+1)(x-4)} + \frac{2(x+1)}{(x+1)(x-4)}$ $\frac{4(x-4) + 2(x+1)}{(x+1)(x-4)} + \frac{2(x+1)}{(x+1)(x-4)}$ $\frac{4(x-16+2x+2)}{(x+1)(x-4)}$ $\frac{2x-14}{(x+1)(x-4)}$ $\frac{2(x-7)}{(x+1)(x-4)}$
EXAMPLE $\frac{E \times AMPLE}{4} = \frac{2 \times -5}{4} = \frac{2 \times -5}{4} = \frac{2 \times -1}{3}$	ALGEBRAIC FRACTIONS 3 Work also apply to algebraic fractions minator before adding or f all denominators present). Solution Law = 12 $\frac{22x}{3} + \frac{2x}{4} = \frac{8x}{12} + \frac{32x}{12} = \frac{112x}{12}$ Solution Law = 6 $\frac{x+1}{3} + \frac{23x-1}{2} = \frac{2(3x+1)}{6} + \frac{3(2x-1)}{6}$ $= \frac{2(3x+1)+3(2x-1)}{6}$ $= \frac{2x+2+6x-3}{6}$ $= \frac{8x-1}{6}$ Solution Law = 12 $\frac{23x-5}{4} - \frac{x-1}{3} = \frac{3(2x-5)-4(x-1)}{12}$ $= \frac{3(2x-5)-4(x-1)}{12}$ = 6x-15-4x+4	EXAMPLE $\frac{3}{x} + \frac{1}{25c}$ $\frac{4}{x+1} + \frac{2}{x-4}$	ALGEB	$\frac{50L\sqrt{110N}}{3x} = \frac{6}{2x} + \frac{1}{2x} = \frac{2}{2x}$ $\frac{3}{x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{3}{2x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ $\frac{50L\sqrt{110N}}{4x} = Lcm (x+1)(x-4)$ $\frac{4}{(x+1)} + \frac{2}{x-4}$ $\frac{4(x-4)}{(x+1)(x-4)} + \frac{2(x+1)}{(x+1)(x-4)}$ $\frac{4(x-4) + 2(x+1)}{(x+1)(x-4)}$ $\frac{4(x-16+2x+2)}{(x+1)(x-4)}$ $\frac{2x-14}{(x+1)(x-4)}$ $\frac{2(x-7)}{(x+1)(x-4)}$

Fractions - Algebraic Fractions

EMULTIPLY ING ALGEBRAIC FRACTIONS

I deas from numerical work apply to algebraic fractions.

Simplify the result if possible.

$$\frac{E \times AMPLE}{\frac{x-2}{32c}} \rightarrow \frac{SOLUTION}{\frac{x-2}{32c}} \times \frac{2x}{(x-2)^{L}}$$

$$= \frac{2 \times (x-2)}{3 \times (x-2)^{T}}$$

$$= \frac{2}{3(x-2)}$$

$$\frac{x+5}{2} \times \frac{8}{x^{2}-25}$$

$$= \frac{8 (x+5)}{2 (x^{2}-25)}$$

8 x³-25) = $\frac{8(3+5)}{2(3+5)(3-5)}$ = factorise $= -\frac{4}{x-5}$

Note:

without factorising the final result would not have been fully simplified.

EDIVIDING ALGEBRAIL FRACTIONS

I deas from numerical work apply to algebraic fractions.

To divide by an <u>algebraic fraction</u> flip the second fraction upside down and multiply.

 $\frac{2x-3}{7} \times \frac{2}{6x-9}$

2 (2x-3) 7×3(2x-3)

2 (200-3) 21 (200-3)

 $\frac{2}{21}$

$$\frac{EXAMPLE}{2} \xrightarrow{\rightarrow} \frac{SOLUTION}{2}$$

$$\frac{2x-3}{7} \div \frac{6x-9}{2}$$

$$= \frac{2x-3}{7} \times \frac{2}{6x-9}$$

$$= \frac{2(2x-3)}{7 \times 3(2x-3)}$$

$$= \frac{2}{21}$$

Note:

Without factorising the final answer would not have been Rilly simplified.

Exercise C: Simplifying Algebraic Fractions

Ideas from numerical fraction work also apply to algebraic fractions.

When **simplifying algebraic fractions**, you cancel **common factors** on the **numerator** and the **denominator** (these **common factors** must be **multiplied** with other **factors**!).

Simplify the following algebraic fractions by cancelling common factors.

(1)
$$\frac{a^5}{a^2}$$
 (2) $\frac{c^3}{c^7}$
(3) $\frac{4x^4}{6x^2}$ (4) $\frac{35y^9}{10y^{12}}$

Simplify the following algebraic fractions by cancelling common factors.

(5)
$$\frac{(x-1)(x+2)}{2(x+2)}$$
 (6) $\frac{a(a+5)}{7a}$
(7) $\frac{t+1}{4(t+1)}$ (8) $\frac{8x(x+3)^2}{20x^2(x+3)}$

Simplify the following **algebraic fractions** by **cancelling common factors**. You will have to ensure that the **numerator** and **denominators** are **factorised** to spot **common factors** that will **cancel**.

(9)
$$\frac{6x+8}{9x+12}$$

(10) $\frac{10x+15}{5x-10}$
(11) $\frac{8x-16}{6x+24}$
(12) $\frac{3x-3}{12x^2-12x}$

Simplify the following **algebraic fractions** by **cancelling common factors**. You will have to ensure that the **numerator** and **denominators** are **factorised** to spot **common factors** that will **cancel**.

(13)
$$\frac{x^2 - 1}{x^2 - x}$$
 (14) $\frac{4x + 12}{x^2 - 2x - 15}$

(15)
$$\frac{x^2 - 5x}{x^2 + 3x - 40}$$
 (16) $\frac{x^2 - 9x + 14}{2x^2 - 13x - 7}$

Exercise D: Adding and Subtracting Algebraic Fractions

Ideas from numerical fraction work also apply to algebraic fractions.

When **adding** or **subtracting fractions** you need to ensure that you have a **common denominator**.

This can be found by looking for the **lowest common multiple** of the **denominators present**.

A **common multiple** can be found quickly by **multiplying the denominators** although this may not always be the **lowest** possible.

Simplify these algebraic fractions by writing them as a single fraction (complete the algebraic addition or subtraction!).

Ensure that the result is **fully simplified**.

- (1) $\frac{x}{3} + \frac{x}{4}$ (2) $\frac{4x}{5} - \frac{x}{2}$ (3) $\frac{x+4}{3} + \frac{x-2}{5}$ (4) $\frac{x+4}{6} - \frac{x-2}{8}$
- (5) $\frac{5x+2}{4} \frac{3-2x}{9}$ (6) $\frac{2x+3}{3} + \frac{4x+1}{7}$

(7)
$$1 + \frac{x}{3}$$
 (8) $\frac{2x}{5} - 4$

(9)
$$\frac{2x-1}{2} + \frac{3x+5}{4}$$
 (10) $\frac{4x+3}{5} - \frac{8x-7}{10}$

Simplify these algebraic fractions by writing them as a single fraction (complete the algebraic addition or subtraction!).

Ensure that the result is **fully simplified**.

$$(11) \quad \frac{2}{x} + \frac{1}{3x} \qquad (12) \quad \frac{5}{4x} - \frac{2}{3x} \\ (13) \quad \frac{5}{x-1} + \frac{2}{x+3} \qquad (14) \quad \frac{7}{3x+5} - \frac{3}{2x+1} \\ (15) \quad \frac{x+3}{x-2} + \frac{2x}{x+5} \qquad (16) \quad \frac{x+2}{x-1} - \frac{x-3}{2x+1} \\ (17) \quad 2 + \frac{5}{x} \qquad (18) \quad 3 - \frac{1}{2x-1} \\ (19) \quad \frac{p}{q} + \frac{3p}{2q} \qquad (20) \quad \frac{x}{a} + \frac{2y}{5b} \\ \end{cases}$$

Exercise E: Multiplying and Dividing Algebraic Fractions

Ideas from numerical fraction work also apply to algebraic fractions.

When multiplying fractions:

- write any mixed numbers as improper fractions
- write integers as themselves over one
- multiply the top numbers together and the bottom numbers together

Complete these fraction multiplication questions (simplify the result if possible).

Simplify these algebraic fractions by writing them as a single fraction (complete the algebraic multiplication!).

Ensure that the result is **fully simplified**.

(1)	$\frac{x+1}{3x} \times \frac{2x}{(x+1)^2}$	(2)	$\frac{x^3}{(x-5)^2} \times \frac{(x-5)}{4x}$
(3)	$\frac{(c+2)^2}{b^3} \times \frac{5b}{c+2}$	(4)	$\frac{x+7}{12x} \times \frac{4x}{5}$
(5)	$\frac{4x+8}{5} \times \frac{2x}{3x+6}$	(6)	$\frac{10x-5}{2x+8} \times \frac{x+4}{6x-3}$
(7)	$\frac{x^2 - 1}{3x} \times \frac{1}{x + 1}$	(8)	$\frac{3x-5x^2}{2} \times \frac{7x+1}{x}$

When **dividing fractions**:

- write any **mixed numbers** as **improper fractions**
- write integers as themselves over one
- flip the second fraction upside down then multiply the fractions

Complete these fraction division questions (simplify the result if possible).

Simplify these algebraic fractions by writing them as a single fraction (complete the algebraic division!).

Ensure that the result is **fully simplified**.

(9)
$$\frac{2x}{5} \div \frac{x}{2}$$
 (10) $\frac{4x-6}{5} \div \frac{2x-3}{x+1}$

(11)
$$\frac{x^2 - 9}{2} \div \frac{x - 3}{4}$$
 (12) $\frac{4x}{3} \div \frac{x^2 + 2x}{2}$

FRACTIONS / ALGEBRAIC FRACTI	ONS EXERCISE A
$1) \frac{2}{3} = \frac{5}{3} \qquad (2) 6 \frac{1}{4} = \frac{25}{4}$	$3 2\frac{4}{5} = \frac{14}{5} \qquad 4 \frac{27}{10} = 2\frac{7}{10}$
(3) 31/8 = 3 € (6) ½ = 7 ½	
$\overrightarrow{P} \frac{1}{2} + \frac{2}{5} = \frac{5}{10} + \frac{4}{10} = \frac{9}{10}$	
$\begin{array}{c} (9) \frac{3}{4} + \frac{5}{7} = \frac{21}{28} + \frac{20}{28} = \frac{41}{28} \left(\frac{13}{28} \right) \end{array}$	回時+4年=5キ+3=5元
(1) $7\frac{5}{6} - 3\frac{1}{8} = 4\frac{10}{24} - \frac{3}{24} = 4\frac{17}{24}$	$(12) \int \frac{2}{5} - 2\frac{2}{3} = \frac{2}{5} \frac{6}{15} - \frac{10}{15}$
	$=3-\frac{4}{15}=2\frac{15}{15}-\frac{4}{15}=2\frac{11}{15}$
(3) $\frac{2}{3} \times \frac{3}{7} = \frac{6}{21} = \frac{2}{7}$	$\begin{array}{c} \hline 1 \\ \hline 1 \\ \hline 4 \\ \hline 9 \\ \hline 7 \\ \hline 9 \\ \hline 9 \\ \hline 7 \\ \hline 7 \\ \hline 7 \\ \hline 9 \\ \hline 7 \hline$
$\begin{array}{r} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$ \begin{array}{c c} \hline 1 \\ \hline 1 \\ \hline 4 \\ \hline 4 \\ \hline \end{array} \\ \begin{array}{c} 1 \\ \hline 3 \\ \hline 4 \\ \hline 3 \\ \hline 4 \\ \hline 3 \\ \hline 4 \\ \hline 3 \\ \hline 3 \\ \hline 4 \\ \hline 3 \\ \hline 1 \\ 1 \\$
$(i) 5 \times 3\frac{1}{4} = \frac{5}{1} \times \frac{13}{4} = \frac{65}{4} (16\frac{1}{4})$	$\begin{array}{c} 18 \\ \hline 2\frac{3}{5} \times 4\frac{1}{9} = \frac{13}{5} \times \frac{37}{9} = \frac{481}{45} \left(10\frac{21}{47} \right) \end{array}$
$(9) \frac{3}{10} \frac{1}{2} \frac{3}{10} \frac{3}{1} \frac{3}{10} \frac{3}{1} \frac{3}{10} \frac{3}{1} \frac{3}{10} \frac{3}{10$	$ \widehat{2} \overrightarrow{7}_{12} \overrightarrow{7}_{4} = \overrightarrow{7}_{12} \cancel{7}_{4} = \frac{7}{36} = \frac{7}{9} $
(2) $\frac{1}{3} \div 2 = \frac{1}{3} \div \frac{2}{7} = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6}$	(1) $2\frac{1}{2} \div 3\frac{1}{3} = \frac{5}{2} \div \frac{11}{3} = \frac{5}{2} \times \frac{3}{11} = \frac{15}{22}$
$\begin{array}{c} \hline 13 \\ \hline 23 \\ \hline 2 \\ \hline 2 \\ \hline 4 \\ \hline 2 \\ \hline 2 \\ \hline 4 \\ \hline 2 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline 2 \\ \hline 3 \\ \hline 3$	$(24) \frac{6}{2/3} = 6 \div \frac{2}{3} = 6 \div \frac{2}{3}$
25 × 2 (1) × 5	27 × 32 28 × 12
(2) 4:2 = 4 × 1 = 4 = 2	$\begin{array}{c} (30) \frac{3}{7} + 2 = \frac{3}{7} \times \frac{1}{7} = \frac{3}{14} \\ \end{array}$
$31 2_4^2 = \frac{11}{4}$	
2年江= 4:2 = 4×七	$\frac{-11}{8} = \frac{3}{8}$

FRACTIONS/ALGEBRAIC FRACTIONS EXENCISE A $(33) (34)^{1} = 34 \times 34 = 910$ 32 (1) = + × 1 = + $(35)\left(\frac{3}{10}\right)^{\dagger} = \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} = \frac{81}{10000}$ $34 \left(\frac{2}{5}\right)^3 = \frac{2}{5} \times \frac{2}{5} \times \frac{2}{5} = \frac{8}{125}$ $(3) \left(\left| \frac{2}{3} \right)^3 = \left(\frac{5}{3} \right)^3 = \frac{5}{3} \times \frac{5}{3} \times \frac{5}{3} = \frac{125}{27} \quad (2) \left(2 + \frac{1}{2} \right)^2 = \left(\frac{5}{2} \right)^2 = \frac{5}{2} \times \frac{5}{2} = \frac{25}{4}$ FRACTIONS / ALGEBRAIC FRACTIONS EXENCISE B ()(q) y = 2(2) - 3 = 4 - 3 = 1(b) y = 2(-4) - 3 = -8 - 3 = -11 $(c) = 2(\frac{1}{2}) - 3 = \frac{2}{2} - 3 = 1 - 3 = -2$ $(d) y = 2(-\frac{3}{8}) - 3 = -\frac{6}{8} - 3 = -3\frac{6}{8} = -3\frac{3}{4}$ (2) (a) y=2-3=-1 (b) y=2-(-5)=2+5=7 () y = 2 - 2 = 2 - 2 = 2 (d) $y = 2 - (-\frac{2}{2}) = 2 + \frac{2}{2} = \frac{2}{2} + \frac{2}{2} = \frac{2}{2} = \frac{3}{2}$ (3) (a) $y = 7 - \frac{3}{2}(4) = 7 - 6 = 1$ (b) $y = 7 - \frac{3}{2}(-3) = 7 - (-\frac{9}{2}) = 7 + \frac{9}{2} = 11\frac{1}{2}$ (c) $y = 7 - \frac{3}{2}(\frac{3}{2}) = 7 - \frac{9}{4} = 7 - 2\frac{1}{4} = 4\frac{3}{4}$ (d) $y = 7 - \frac{1}{2}(-\frac{1}{4}) = 7 - (-\frac{1}{6}) = 7 + \frac{1}{6} = 7\frac{1}{6}$ (4) (a) $y = (4)^{2} + 2(4) = 16 + 8 = 24$ (b) $y = (-2)^2 + 2(-2) = 4 + -4 = 4 - 4 = 0$ $y = (\frac{1}{2})^{2} + 2(\frac{1}{2}) = \frac{1}{4} + 1 = 1\frac{1}{4}$ (c) (d) $y = (-\frac{1}{4})^2 + 2(-\frac{1}{4}) = \frac{1}{16} - \frac{1}{4} = \frac{1}{16} - \frac{8}{16} = -\frac{7}{16}$

FRACTIONS / ALGEBRAIC FRACTIONS

EXENCISE B

(c) (a)
$$y^{-}(s)^{2}-3(s)+s = 2s-1s+s = 1s$$

(b) $y^{-}(s)^{2}-3(-3)+s = 9+9+s = 23$
(c) $y^{-}(\frac{2}{3})^{2}-3(\frac{2}{3})+s = \frac{4}{9}-2+s = 3\frac{4}{9}$
(d) $y^{-}(-\frac{1}{2})^{2}-3(-\frac{1}{2})+s = \frac{1}{2}+\frac{3}{2}+s = 5\frac{1}{2}+\frac{4}{9}=5\frac{2}{7}=6\frac{7}{9}$
(e) $y^{-}(+1)^{2}-3(-\frac{1}{2})+s = \frac{1}{2}+\frac{3}{2}+s = 5\frac{1}{2}+\frac{4}{9}=5\frac{2}{7}=6\frac{7}{9}$
(f) $y^{-}(+1)^{2}-(-1)-7 = 4+1-7 = -7$
(g) $y^{-}(+\frac{3}{2})^{2}-(-\frac{3}{2})-7 = \frac{36}{4}+\frac{2}{2}-7 = 9-1\frac{1}{2}-7=\frac{1}{2}$
(g) $y^{-}(+\frac{3}{2})^{2}-(-\frac{3}{2})-7=\frac{36}{4}+\frac{2}{3}-7=9+1\frac{1}{2}-7=3\frac{1}{2}$
(g) $y^{-}(+\frac{1}{2})^{3}=4\times12s=soo$
(h) $y^{-}(+(-3)^{3})^{3}=4\times-27=-108$
(c) $y^{-}(+(-3)^{3})^{3}=4\times-27=-108$
(d) $y^{-}(-\frac{1}{2})^{3}=4\times-\frac{1}{64}=-\frac{4}{16}=-\frac{1}{16}$
(e) $y^{-}(10)^{3}+5(10)^{2}-2(10)^{2}-1000+500-20=14.80$
(f) $y^{-}(-1)^{3}+5(-1)^{2}-2(-1)^{2}-8+20+4=16$
(g) $y^{-}(-1)^{3}+5(-1)^{2}-2(-1)^{2}=-8+20+4=16$
(g) $y^{-}(-\frac{1}{2})^{3}+5(\frac{1}{2})^{2}-2(\frac{1}{2})^{2}=-\frac{1}{8}+\frac{5}{4}+1=-\frac{1}{8}+\frac{10}{8}+\frac{8}{8}=\frac{17}{8}$

FRA	CTIONS/ ALGEBRAIC FRACTION	Exercise C
1	$\frac{a^{5}}{a^{2}} = a^{3} \qquad \textcircled{2} \qquad \underbrace{c^{3}}_{c^{2}} = \underbrace{1}_{c^{4}}$	$3 \frac{43c^4}{6x^2} = \frac{23c^2}{3} + \frac{35y^9}{10y^{12}} = \frac{7}{2y^3}$
S	$\frac{(2c-1)(2c+2)}{2(2c+2)} = \frac{2c-1}{2}$	$ \begin{array}{c} \textcircled{6} \underbrace{g(a+5)}_{7g} = \underbrace{(a+5)}_{7} \end{array} $
7	$\frac{(\pm \pm 1)}{4(\pm 1)} = \frac{1}{4}$	(8) $\frac{8 \times (3(+3)^2}{20 \times (3(+3))} = \frac{8 \times (3(+3))(2(+3))}{20 \times (3(+3))} = \frac{2(2(+3))}{20 \times (2(+3))} = \frac{2(2(+3))}{5 \times (2(+3))}$
9	$\frac{6x+8}{9x+1} = \frac{2(3x+1)}{3(3x+1)} = \frac{2}{3}$	(b) $\frac{10x+15}{5x-10} = \frac{5(2x+3)}{5(2x-2)} = \frac{2x+3}{2x-2}$
(I)	$\frac{8_{22}-16}{6_{22}+2_{22}+4} = \frac{1}{6} \frac{1}{(22-2)} = \frac{1}{3} \frac{1}{(22-2)} \frac{1}{3} \frac{1}{(22+4)}$	$(2) \frac{32-3}{12i^2 - 12i} = \frac{3(2i-1)}{12i(2i-1)} = \frac{1}{42i}$
3	$\frac{\chi^{2}-1}{\chi^{2}-\chi} = \frac{(\chi+1)(\chi-1)}{\chi(\chi-1)}$	$\frac{4x+12}{x^2-2x-15} = \frac{4(x+3)}{(x-5)(x+3)}$
	$= \frac{x+1}{2}$	$= \frac{4}{x-5}$
Ľ	$\frac{3c^{2}-5x}{3c^{2}+3c^{2}+c} = \frac{3c(3c-5)}{(x+8)(x-5)}$	$\frac{(16)}{2\pi^{2}-9\pi+14} = \frac{(2\pi-7)(2\pi-2)}{(2\pi-7)(2\pi+1)}$
	= ><+8	$= \frac{x-2}{2x-1}$
FM	CTIONS / ALGEBRANC FRACTION	Exerciser
	$\frac{x}{3} + \frac{3}{4} = \frac{4x}{12} + \frac{3}{12}$	$=\frac{7\pi}{12}$
È	$\frac{4x}{5} - \frac{3x}{2} = \frac{8x}{10} - \frac{5x}{10} =$	<u>3,2</u> 10
3	$\frac{x+4}{3} + \frac{x-2}{5} = \frac{5(x+4)}{15}$	$+ \frac{3(32-2)}{15} = \frac{522+20+332-6}{15} = \frac{832+14}{15}$
4	$\frac{x+4}{6} - \frac{x-2}{8} = \frac{4(x+4)}{24}$	$-\frac{3(x-2)}{24} = \frac{4x+16-3x+6}{24} = \frac{x+22}{24}$
$$\frac{FAACTIONJ / ALGEBAALC FRACTION)}{(S) Sx + 2} = \frac{3 - 2x}{9} = \frac{9 (5x + 1)}{34} - \frac{4 (3 - 1x)}{34} = \frac{4 (5x + 1)}{34} - \frac{4 (3 - 1x)}{34} = \frac{5 (5x + 1)}{34} - \frac{5 (3x + 1)}{34} = \frac{5 (3x + 1)}{34} - \frac{4 (3 - 1x)}{34} = \frac{5 (3x + 1)}{34} - \frac{5 (3x + 1)}{34} = \frac{3 (3x + 1)}{21} = \frac{3 (3x + 1)}{21} + \frac{3 (4x + 1)}{21} = \frac{14x + 21 + 12x + 3}{21} = \frac{24x + 24}{21}$$

$$(S) \frac{2x + 3}{5} + \frac{4x + 1}{7} = \frac{3}{7} + \frac{x}{5} = \frac{3 + x}{3}$$

$$(S) \frac{2x - 1}{5} - 4 = \frac{2x}{5} - \frac{2x}{5} = \frac{2x - 2x}{5} = \frac{2 (5x - 1x)}{5}$$

$$(S) \frac{2x - 1}{2} + \frac{3x + 5}{4} = \frac{2 (12x - 1)}{4} + \frac{3x + 5}{4} = \frac{4x - 2 + 3x + 5}{4} = \frac{7x + 3}{4}$$

$$(D) \frac{4x + 3}{5} - \frac{8x - 7}{10} = \frac{2 (4x + 3)}{10} - \frac{(8x - 7)}{10} = \frac{8x + 4 - 8x + 5}{10} = \frac{7x + 3}{10}$$

$$(E) \frac{3}{x} + \frac{1}{3x} = \frac{6}{3x} + \frac{1}{3x} = \frac{6 + 1}{12x} = \frac{7}{12x}$$

$$(E) \frac{5}{(x - 1)} + \frac{2}{(x + 3)} = \frac{5(x + 3)}{(x + 3)} + \frac{2((x - 1))}{(x - 1)(x + 3)} = \frac{5x + 15 + 2x - 2}{(x - 1)(x + 3)}$$

$$(E) \frac{5}{(x - 1)} + \frac{7}{(x + 1)} = \frac{7}{(3x + 5)(2x + 1)} = \frac{14x + 7 - 9x - 15}{(3x + 5)(2x + 1)} = \frac{7x + 13}{(3x + 5)(2x + 1)}$$

$$(E) \frac{3x + 3}{(2x + 1)} = \frac{7(2x + 1) - 3(3x + 5)}{(3x + 5)(2x + 1)} = \frac{14x + 7 - 9x - 15}{(3x + 5)(2x + 1)} = \frac{3x^{2} + 40x - 14}{(x - 1)(x + 5)}$$

$$(E) \frac{3x + 3}{x - 2} + \frac{2x}{x + 5} = \frac{(x + 3)(x + 5) + 2x(x - 2)}{(x - 2)(x + 5)} = \frac{x^{3} + 9x - 15}{(x - 1)(x + 5)} = \frac{3x^{3} + 40x + 15}{(x - 1)(x + 5)}$$

$$\frac{(16)}{x-1}\frac{x+2}{2x+1} = \frac{(x+2)(2x+1)-(5(-3))(x-1)}{(x-1)(2x+1)} = \frac{2x^2+5x+2-(x^2-4x)(+3)}{(x-1)(2x+1)} = \frac{x^2+9x-1}{(x-1)(2x+1)}$$

$$\frac{FnActions/Allegame matter}{2x + 5} = \frac{2x + 5}{2c} = \frac{2x + 5}{2c}$$

$$(i) 2 + \frac{5}{2c} = \frac{2x}{3c} + \frac{5}{2c} = \frac{2x + 5}{2c}$$

$$(i) 3 - \frac{1}{2x^{-1}} = \frac{3(2x^{-1})}{2x^{-1}} - \frac{1}{2x^{-1}} = \frac{5x^{-3} - 1}{2x^{-1}} = \frac{5x^{-4} - 1}{2x^{-1}} = \frac{5x^{-4} - 1}{2x^{-1}} = \frac{2(3x^{-1})}{2x^{-1}}$$

$$(i) \frac{p}{4} + \frac{3p}{24} = \frac{2p}{24} + \frac{3p}{24} = \frac{5p}{24}$$

$$(i) \frac{x}{4} + \frac{2n}{56} = \frac{5bx}{5ab} + \frac{2ay}{5ab} = \frac{5bx(+2ay)}{5ab}$$

$$\frac{Fnactions/Allegaac Filactions}{5ab}$$

$$\frac{Fnactions/Allegaac Filactions}{4xc(x^{-4})^{1}} = \frac{2}{3(3c^{-1})}$$

$$(i) \frac{2x(2x^{+1})^{1}}{3x(2x^{+1})^{2}} = \frac{2}{3(3c^{+1})}$$

$$(j) \frac{2x(2x^{+1})^{2}}{4xc(x^{-5})^{2}} = \frac{x^{1}}{4(x^{-5})}$$

$$(j) \frac{2x(2x^{+1})^{2}}{5(3x^{+6})} = \frac{5(2x^{-1})}{b^{4}}$$

$$(j) \frac{4x(2x^{+3})}{6^{3}(c^{+2})} = \frac{x^{+3}}{15}$$

$$(j) \frac{2x(4x^{+3})}{5(3x^{+6})} = \frac{23cx}{2x(2x^{+1})} = \frac{8x(2x^{+2})}{15(2x^{+1})} = \frac{8x}{6}$$

$$(j) \frac{(10x^{-5})(2x^{+4})}{(2x^{+8})(6y^{-3})} = \frac{5(2x^{-1})(3x^{-1})}{2(2x^{+4})3(2x^{-1})} = \frac{5(x^{-1})}{3x(2x^{+1})} = \frac{5(x^{-1})}{3x(2x^{+1})} = \frac{2((3-5x)(3x^{+1}))}{2(2x^{-1})} = \frac{2((3-5x)(3x^{+1}))}{2(2x^{-1})} = \frac{2}{2x^{-1}}$$

$$(i) \frac{(3x^{-5}x^{1})(3x^{-4})}{2x^{-1}} = \frac{2((3-5x)(3x^{+1}))}{2x^{-1}} = \frac{2(3-5x)(3x^{-4})}{2x^{-1}}$$

FRACTIONS / ALGEBRAIL FRACTIONS

EXENCISEE

(a)
$$\frac{2x}{5} \times \frac{2}{x} = \frac{4x}{5} = \frac{2}{5}$$

(b) $\frac{4x-6}{5} \times \frac{5(+1)}{25(-3)} = \frac{2(25(-3))(x+0)}{5(25(-3))} = \frac{2(x+1)}{5}$
(c) $\frac{5(2-9)}{2} \times \frac{4}{x-3} = \frac{4(5(+3)(5(-3))}{2(5(-3))} = 2(5(+3))$
(c) $\frac{4x}{3} \times \frac{2}{5(2+2)} = \frac{85(-3)}{3(5(-3))} = \frac{8}{3(5(-2))}$

INDICES

Indices

Objectives

- \star know the meaning of positive indices
- \star know that any number to the power zero yields one (zero index)
- \star know the meaning of negative indices (give reciprocals)
- \star know the meaning of fractional indices (give roots)
- ★ evaluate numbers to various powers (both negative and fractional) without a calculator
 - know the laws of indices
- simplify algebraic expressions involving indices
 - write expressions in index form

REFERENCE IN OTHER RESOURCES

Head Start:Laws of Indices - Pages 6-10.Alpha Workbooks:Indices - Pages 5-6.

Indices - Number

	INDICES AND NUMBER
INDICES AND NUMBERS	ENEGATIVE INDUCES
EMEANING (BASIC)	Negative indices aire reciprocals.
<u>Indices</u> are an efficient way to express the <u>repeated multiplication</u> of a term by itself:	The <u>reciprocal</u> of a <u>number</u> is <u>l</u> the number
$b^{n} = b \times b \times \dots \times b$ Eb appears n-times EXAMPLE Evaluate 6 ¹ Solution 6 ² - 6 × 6 = 36 $b^{n} = 1$ Evaluate 2 ⁶ Solution 6 ² - 6 × 6 = 36 2 ⁶ = 2 × 2 × 2 × 2 × 2 × 2 = 64 Evaluate 2 ⁶ Any number to the power zero yields one. $b^{n} = 1$ Example Example Evaluate 3 ⁿ Solution 3 ⁿ = 1 O·2 ⁿ = 1 O·2 ⁿ = 1	To find the reciprocal of a fraction, flip the fraction upside down. $ \begin{bmatrix} b^{-n} = \frac{1}{b^{n}} \\ \hline \hline Example} \\ \hline Example} \\ \hline Example} \\ \hline Example $
$\frac{ ND (ES AND NUMBER]}{ FRACTIONAL INDICES}$ $\frac{ FRACTIONAL INDICES}{ Fractional inclines give roots}$ $\frac{ Fractional inclines give roots}{ Fractional inclines give roots}$ $\frac{ Fractional inclines give roots}{ Fractional inclines give root}$ $\frac{ Fractional inclines give roots}{ Fractional inclines give root}$ $\frac{ Fractional inclines give roots}{ Fractional inclines give root}$ $\frac{ Fractional inclines give roots}{ Fractional inclines give root}$ $\frac{ Fractional inclines give roots}{ Fractional inclines give root}$ $\frac{ Fractional inclines give roots}{ Fractional inclines give root}$ $\frac{ Fractional inclines give roots}{ Fractional inclines give root}$ $\frac{ Fractional inclines give roots}{ Fractional inclines give root}$ $\frac{ Fractional inclines give roots}{ Fractional inclines give root}$ $\frac{ Fractional inclines give root}{ Fraction}$ $\frac{ Fractional inclines give root}{ Fractional inclines give root}$ $\frac{ Fractional inclines give root}{ Fractional inclines give root}$ $\frac{ Fractional inclines give root}{ Fractional inclines give root}$ $\frac{ Fractional inclines give root}{ Fractional inclines give root}$ $\frac{ Fractional inclines give root}{ Fractional inclines give root}$ $\frac{ Fractional inclines give root}{ Fractional inclines give root}$ $\frac{ Fractional inclines give root}{ Fractional inclines give root}$ $\frac{ Fractional inclines give root}{ Fractional inclines give root}$ $\frac{ Fractional inclines give root}{ Fractional inclines give root}$ $\frac{ Fractional inclines give root}{ Fractional inclines give root}$ $\frac{ Fractional inclines give root}{ Fractional inclines give root}$ $\frac{ Fractional inclines give root}{ Fractional inclines give root} Fractional inclines give root}{ Fra$	INDICES AND NUMBER FMINED WOLLES ROOT FIRST EXAMPLE EVALUATE $27^{2/3}$ SOLUTION $27^{2/3} = 3^2 = 9$ EXAMPLE EVALUATE $16^{-3/4}$ SOLUTION $16^{-3/4} = 2^{-3} = \frac{1}{2^3} = \frac{1}{8}$ $5^{-3/4} = (\sqrt{5})^m$ $16^{-3/4} = 2^{-3} = \frac{1}{2^3} = \frac{1}{8}$

Indices - Number

Exercise A: Evaluating Numerical Expressions

Recall the basic meaning of indices:

 $b^n = b \times b \times b \times \dots \times b$ the *b* appears *n*-times

Evaluate the following without a calculator:

- (1) 9^2 (2) 5^3 (3) 2^5 (4) 10^4
- (5) 1^{10} (6) 3^4 (7) 7^2 (8) 2^7

Recall that any number to the power zero gives one.

Evaluate the following without a calculator:

 $(9) \quad 7^0 \qquad (10) \quad 2^0 \qquad (11) \quad 0.3^0 \qquad (12) \quad 99^0$

Recall that a negative power gives a reciprocal:

$$b^{-n} = \frac{1}{b^n}$$

Evaluate the following without a calculator:

(13) 7^{-1} (14) 3^{-2} (15) 5^{-3} (16) 10^{-5} (17) 4^{-3} (18) 9^{-1} (19) 2^{-6} (20) 8^{-2}

Recall that **fractional powers** gives a **roots**:

 $b^{\frac{1}{2}} = \sqrt{b}$ power half is square root (2 on bottom in power) $b^{\frac{1}{3}} = \sqrt[3]{b}$ power third is cube root (3 on bottom in power) $b^{\frac{1}{4}} = \sqrt[4]{b}$ power quarter is fourth root (4 on bottom in power) $b^{\frac{1}{n}} = \sqrt[n]{b}$ power 1/n is nth root (n on bottom in power)

Evaluate the following without a calculator:

(21) $25^{\frac{1}{2}}$ (22) $81^{\frac{1}{2}}$ (23) $144^{\frac{1}{2}}$ (24) $36^{\frac{1}{2}}$ (25) $8^{\frac{1}{3}}$ (26) $1000^{\frac{1}{3}}$ (27) $27^{\frac{1}{3}}$ (28) $125^{\frac{1}{3}}$ (29) $32^{\frac{1}{5}}$ (30) $81^{\frac{1}{4}}$ (31) $100000^{\frac{1}{5}}$ (32) $1^{\frac{1}{7}}$

Indices - Number

Exercise A: Evaluating Numerical Expressions

When a more general fraction appears as the power:

- consider the **root first**
- then do the **other bit!**

Evaluate the following without a calculator:

$(33) 8^{\frac{2}{3}} \tag{34}$	$32^{\frac{3}{5}}$	(35)	$1000^{\frac{4}{3}}$	(36)	$125^{\frac{2}{3}}$
----------------------------------	--------------------	------	----------------------	------	---------------------

- $(37) \quad 27^{\frac{4}{3}} \qquad (38) \quad 16^{\frac{7}{4}} \qquad (39) \quad 400^{\frac{3}{2}} \qquad (40) \quad 81^{\frac{3}{4}}$
- (41) $16^{-\frac{3}{4}}$ (42) $1000^{-\frac{2}{3}}$ (43) $25^{-\frac{3}{2}}$ (44) $32^{-\frac{2}{5}}$

Evaluate the following without a calculator:

(45)
$$\left(\frac{1}{2}\right)^{-1}$$
 (46) $\left(\frac{3}{4}\right)^{-1}$ (47) $\left(\frac{1}{5}\right)^{-3}$ (48) $\left(\frac{3}{2}\right)^{-4}$
(49) $\left(\frac{9}{16}\right)^{-\frac{1}{2}}$ (50) $\left(\frac{125}{8}\right)^{-\frac{2}{3}}$

Check a range of these answers using a calculator to ensure you know how to use the **power key** and deal with **fractional powers**.

Indices - Algebra

INDICES AND ALGEBRA

$p_{u} \times p_{w} = p_{u+w}$	MULTIRY (ADD POWERS)
$p_{u} \neq p_{w} = p_{u-w}$	DIVIDE (SUBTRACT POWERS)
$(p_n)_M = p_{u \times M}$	POWER TO POWER (MULTIPLY POWEN)
$(axb)^m = a^m x b^m$	BRACKET RULE (ATTACH POWER TO EACH)

EXAMPLE

Find the missing power 3/2 = n?

3(n = n'/3

EXAMPLE

Find the missing power $\frac{1}{n^4} = n^2$

SOLUTION

 $\frac{1}{n^4} = n^{-4}$

L)	<u>EXAMPLE</u> Simplify 3t ² xSt ⁴
owers)	<u>SOLUTION</u> 3t ² ×5t ⁴ = 15t ⁶ add powers on letter
эси)	EXAMPLE Simplify $(2ab^2)^3$ Solution $(2ab^2)^3 = 2^3a^3b^6 = 8a^3b^6$
	$\frac{E \times AMPLE}{Simplify} (5 \times 2^{3})^{2} \times 4 \times 2^{-1}$ $\frac{Solution}{(5 \times 2^{3})^{2} \times 4 \times 2^{-1}}$ $= S^{2} \times 4^{9} \times 4 \times 2^{-1}$ $= 25 \times 4^{9} \times 4 \times 2^{-1}$ $= 100 \times 5^{9} \times 5^{-1}$ $= 100 \times 5^{9} \times 5^{-1}$ $Square all tempin bracketmultiply numberadd powers onletters$

INDICES AND ALGEBRA

INDICES AND ALGERNA

	•
EXAMPLE	
Simplify 12 at b	
$\frac{5010000}{12a^{7}b^{5}} = 4a^{5}b^{4}$	clivide numbers subtract powers on letters
EXAMPLE	
Simplify $\frac{2 \times^2 y^7}{10 \times^4 y^4}$	
SOLUTION	
$\frac{2x^2y^2}{10x^4y^2y^4} = \frac{x^2y^2}{5}$	$\left(2\frac{\sqrt{3}}{5\sqrt{2}}\right)$
EXAMPLE	
Simplify Jab3 x ax	3/61
SOLUTION	
V9003 × 0 × 3/6	1
= $(9ab^3)^{1/2} \times G \times b^{1/3}$	$\frac{1}{2} + 1 = \frac{1}{2} + \frac{2}{2} = \frac{3}{2}$
= 3 a ^{1/2} b ^{3/2} x a x b ^{1/3}	$\frac{3}{2} + \frac{1}{2} = \frac{9}{6} + \frac{2}{6} = \frac{11}{16}$
$= 3a^{3/2}b^{11/6}$	

Indices - Algebra

Exercise B: Simplifying Algebraic Expressions

Know the laws of indices:

The multiplication law:	$b^n \times b^m = b^{m+n}$
The division law:	$b^n \div b^m = b^{m-n}$
The power-to-power law:	$(b^n)^m = b^{n \times m}$
The bracket law:	$(a \times b)^n = a^n \times b^n$

Find the missing power *i.e.* $x^{?}$.

 $(2) \quad \frac{1}{x^3} = x^?$ (1) $\sqrt{x} = x^?$ $(4) \quad \sqrt{x^7} = x^?$ $(3) \quad \sqrt[5]{x} = x^?$ (6) $\frac{1}{\sqrt{x}}$ (5) $\left(\sqrt[3]{x}\right)^4$

Write the following in **index form** *i.e.* $n^{?}$.

- (7) the square root of n
- (9) $\sqrt[4]{n}$

(11)
$$\frac{1}{n^3}$$
 (12) $\frac{1}{\sqrt{n}}$

Simplify the following algebraic expressions.

- (13) $2x^2 \times 3x^5$ $(14) (2c)^3$
- (15) $2a^2b \times 5a^3b^5$ (16) $7p^5q^3 \times 3p^3q^{-1}$
- $(17) (10xy^2)^3$ (18) $(5a^3b^2)^2 \times (a^2b)^4$
- $(19) (2d^{-2})^{-1}$ (20) $(2v^2w)^3 \times (3vw^3)^2$

- (8) the reciprocal of n^2
- (10) $\sqrt[3]{n^2}$
- _3

Indices - Algebra

Exercise B: Simplifying Algebraic Expressions

Know the **laws of indices**:

The multiplication law:	$b^n \times b^m = b^{m+n}$
The division law:	$b^n \div b^m = b^{m-n}$
The power-to-power law:	$(b^n)^m = b^{n \times m}$
The bracket law:	$(a \times b)^n = a^n \times b^n$

Simplify the following algebraic expressions involving reciprocals.

(21)	$\frac{10a^7}{15a^2}$	(22)	$\frac{8p^5q^2}{2p^2q}$
(23)	$\frac{4x^3y^4}{8x^3y}$	(24)	$\frac{9m^2}{3m^3}$
(25)	$\frac{(2p^2q)^3}{(3pq)^4}$	(26)	$\frac{9a^2b^5c^2}{12a^5bc^{-2}}$

Simplify the following algebraic expressions involving roots.

(27) $x\sqrt{x}$ (28) $\frac{c}{\sqrt{c}}$ (29) $(\sqrt{2ab^3})^2$ (30) $\sqrt{p} \times \sqrt[3]{p}$ (31) $\frac{1}{\sqrt[3]{q}} \times \sqrt{q}$ (32) $\sqrt{x^2y} \times 3x^3\sqrt{y}$

INDICES
1) 9 ² = 9×9=81
(j) 104 = 10×10×10×10 = 10000
7 ⁻ =7×7=49
(g) 7° = 1
(12) 99°=1
$(3) 7^{-1} = \frac{1}{7} = \frac{1}{7}$
$(6) 10^{-5} = \frac{1}{10^{5}} = \frac{1}{100000}$
(19) $2^{-6} = \frac{1}{2^6} = \frac{1}{64}$
(21) $25^{\frac{1}{2}} = \sqrt{25^{-1}} = 5$
$(24) 36^{1/2} = \sqrt{36}^{-1} = 6$
$(27) 27^{1/5} = 3\sqrt{27^7} = 3$
30 8114 = 4/81 = 3
(33) $8^{2/3} = 2^2 = 4$
30 125 ^{2/3} = 5 ² =25
(39) $(400)^{3/2} = 20^3 = 8000$
$(42) 1000^{-2/3} = 10^{-2} = \frac{1}{10^{2}} = \frac{1}{100}$
(45) $(\frac{1}{2})^{-1} = \frac{2}{1} = 2$
$(48) \left(\frac{3}{2}\right)^{-4} = \left(\frac{2}{3}\right)^{4} = \frac{16}{81}$

EXERCISEA

I¹⁰ = 1

634=3×3×3×3=81

(b) $5^{-3} = \frac{1}{5^3} = \frac{1}{125}$ $(18) \quad 9^{-1} = \frac{1}{9^{1}} = \frac{1}{9}$

(23)
$$144^{1/2} = \sqrt{144^{1}} = 12$$

(24) $1000^{1/3} = \sqrt[3]{1000^{12}} = 10$
(27) $32^{1/6} = 5\sqrt{32^{12}} = 2$
(27) $1^{1/7} = 7\sqrt{1^{2}} = 1$
(28) $10000^{4/3} = 10^{4} = 10000$
(28) $16^{7/4} = 2^{7} = 128$
(41) $16^{-3/4} = 2^{-3} = \frac{1}{2^{3}} = \frac{1}{8}$
(44) $16^{-3/4} = 2^{-3} = \frac{1}{2^{3}} = \frac{1}{8}$
(44) $32^{-2/8} = 2^{-2} = 1 = \frac{1}{2^{3}} = \frac{1}{4}$
(44) $(\frac{1}{5})^{-3} = (\frac{5}{1})^{3} = 125$
(50) $(\frac{125}{8})^{-2/3} = \frac{4}{25}$

INDICES	EXERCISEB	
$(1) \sqrt{x^{7}} = x^{1/2}$	$(1) \frac{1}{\chi^3} = \chi^{-3}$	3 5/x = x 15
$(4) \sqrt{x^{+}} = x^{-/2}$	5 (s/x)) = x4/3	$6 \frac{1}{\sqrt{x^{1}}} = x^{-1/2}$
	(8) $\frac{1}{n^2} = n^{-2}$	$(q) 4\sqrt{n^{2}} = n^{1/2} + 2$
$(10)^{3}\sqrt{n^{1}} = \sqrt{1/3}$	(i) $\frac{1}{N_3} = V_{-3}$	$(12) \frac{1}{\sqrt{n^{2}}} = n^{-3/2}$
$(3) 2x^2 \times 3x^5 = 6x^7$	$(4) = (2c)^{3}$ = 2 ³ c ³ = 8c ³	$(15) 2a^{2}b \times 5a^{3}b^{5}$ $= 10a^{5}b^{6}$
$(10) 7 p^{5}q^{3} \times 3 p^{3}q^{-1} = 21 p^{8}q^{2}$	$(f) = (10 \times y^{2})^{3}$ = 10^{3} \times 2^{3} \times y^{6} = 1000 × 2^{3} \times y^{6}	$ (Sa^{3}b^{2})^{2} \times (a^{2}b)^{4} $ $ = 5^{2}a^{6}b^{4} \times a^{8}b^{4} $ $ = 25 a^{14} b^{8} $
$ \begin{array}{c} (19) \\ = \\ 2 \\ = \\ 2 \\ - \\ -$	$ \begin{array}{rcl} (2v^{2}w)^{3}x (3vw^{3})^{2} \\ &= 2^{3}v^{6}w^{3}x \ 3^{2}v^{2}w^{6} \\ &= 8v^{6}w^{3}x \ 9v^{2}w^{6} \\ &= 72v^{8}w^{9} \end{array} $	
(21) $\frac{10a^{2}}{15a^{2}} = \frac{2a^{5}}{3}$	$\frac{22}{2} \frac{8p^{5}q^{2}}{2p^{2}q} = 4p^{3}q$	$(23) \frac{4x^3y^4}{8x^3y} = \frac{x^{\circ}y^3}{2} = \frac{y^3}{2}$
$(24) \frac{9m^2}{3m^3} = 3m^2 \text{ or } \frac{3}{M}$	$\begin{array}{c} \hline (2p^{2}q)^{3} &= \frac{8p^{6}q^{3}}{81p^{4}q^{4}} \\ \hline \end{array}$	26 <u>99°6°</u> 129°6°2
	= <u>8p²</u> 819	$= \frac{3 64 c4}{4 a^3}$
$(27) \times \sqrt{x} = x' \times x'' = x$	$\frac{3}{2} \frac{1}{\sqrt{c^2}} = \frac{c^1}{c^{1/2}} = \frac{c^{1/2}}{\sqrt{c^2}}$	$(2q) (\sqrt{2ab^3})^2$ $= 2ab^3$
(30) JP x 3 JP = p'h x p'13	$= \rho^{5/6} (31) \frac{1}{3\sqrt{2^{1}}} \times \sqrt{9} = q^{-1/6} \times q^{1/2} = q^{1/6}$	$(32) \sqrt{x^2y'} \times 3x^3 \sqrt{y'} = 3x y''^2 \times 3x y''^2 = 3x y''^2 + 3x y''^2$

TRIGONOMETRY

Non-Right Angled Triangles

Objectives

- \star know how to do trigonometry with right angled triangles
 - meaning of ratios sin, cos and tan (SOHCAHTOA)
 - Tidentify the correct ratio: sin, cos and tan (SOHCAHTOA), to use in a problem
 - \star use sin, cos or tan keys to find missing sides given an angle and a side
 - \star use sin⁻¹, cos⁻¹ or tan⁻¹ keys to find a missing angle given two sides
 - ***** solve problems in context using trigonometry, including bearings

 \star know and use the sine rule for non-right angled triangles

- $\frac{1}{100}$ identify when the sine rule can be used (given an angle and side opposite)
- $\frac{1}{\sqrt{2}}$ use the sine rule to find missing angles in triangles (sin⁻¹ key)
- $\frac{1}{2}$ use the sine rule to find missing sides in triangles (sin key)
- \swarrow solve problems in context using the sine rule, including bearings

 \star know and use the cosine rule for non-right angled triangles

- $\frac{1}{2}$ identify when the cosine rule can be used (not the sine rule!)
- \swarrow use the cosine rule to find missing angles in triangles (cos⁻¹ key)
- $\frac{1}{\sqrt{2}}$ use the cosine rule to find missing sides in triangles (cos key)
- \swarrow solve problems in context using the sine rule, including bearings

know and use the area formula for non-right angled triangles

REFERENCE IN OTHER RESOURCES

Head Start:Topic not covered.Alpha Workbooks:Basic trigonometry - Pages 29-34; Sine & Cosine Rules 35-38.

Trigonometry (Non-Right Angled Triangles) - Labelling Triangles

NOTATION

There are three key trigonometric results to learn for non-right angled triangles.

All relate to a triangle like the ones shown (basically any triangle, including ones with obtuse angles).

Note

- Angles are marked using capital letters
- Sides are labelled using lower case letters
 (side a is opposite angle A, side b is opposite angle B, side c is opposite angle C)
- Other letters can also be used e.g. P, Q and R for angles with p, q and r for sides respectively
- As you will see, each formula gives you a bargain three for the price of one as other formular can be generated by interchanging letters in a symmetric way.

Trigonometry (Non-Right Angled Triangles) - The Sine Rule

TRIGONOMETRY NON-RIGHT ANGLES TRIANGLES

THE SINE RULE

The sine rule is used to calculate missing sides (or angles) in non-right angled triangles like the one shown:

The sine rule should be used when you know an angle and the length of the side apposite this, along with any other given information.

ANJET KNOW AN ANOLG AND LENGTH OF SIDE OPPOSITE IT TO USE THE SIDE AULS (AT LEAST ONE OTHER PIECE OP (WERMATION WILL ALSO BE GUEN).)

The size rule states that :

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

This is really three formulae:

Use the appropriate only for the problem you are solving. Again, different letters may also be used.

TRIGONOMETRY NON-RIGHT ANGLED TRIANGLES

1HE SINE RULE

EXAMPLE

Given this triangle, determine all of the missing angle.

SOLUTION LAGEL VERTICES & SIDES C IOCOM (6)

DETENMINE ANGLE B FIRST AS SIDE 6 IS KNOWN

6

$$\frac{\sin B}{b} = \frac{\sin A}{a}$$
$$\frac{\sin B}{8} = \frac{\sin 75}{10}$$

$$\sin B = \frac{8 \times \sin 75}{10}$$

NOW USE ANGLES IN A TRIANGLE SUM TO 180° TO FIND C (SIDE C DOES NOT HAVE TO BE DETERMINED).

$$C = 180 - 75 - 50.6$$

 $C = 54.4^{\circ}$

TRIGONOMETRY NON-RIGHT ANGLES TRIANGLES

THE SINE RULE

When calculating angles rather than sides you might find it easier to use the "upside-down" form (or the "reciprocal" form) of the sine rule.

In any problem, once two angles in a briangle are known, the fact that angles in a triangle sum to 180° can be used to find the third angle.

TRIGONOMETRY NON-RIGHT ANGLED TRIANGLES

EXAMPLE

12 cm

Find the size of angle? and the length of the side z.

<u>Х40°</u> У SOLUTION Angle 7:

7 = 180 - 80 - 40 = 60

use the size rule in the form

$$\frac{2}{\sin 60} = \frac{12}{\sin 80}$$

$$\frac{12 \times \sin 60}{\sin 80}$$

2= 10.6m

Trigonometry (Non-Right Angled Triangles) - The Sine Rule

Exercise A: The Sine Rule

The sine rule can be used to find missing angles and sides in non-right angled triangles (use the sine rule if you know an angle and the side opposite).

To avoid too much algebra, use the form with the **unknown** on the **top**.

The two forms of the sine rule are:

The triangle is labelled up in the usual way (other letters may be used):

Note: other letters may be used, the structure of the formula is the same (use two bits!).

Use the sine rule to find all the missing angles in these triangles:

Trigonometry (Non-Right Angled Triangles) - The Sine Rule

Exercise A: The Sine Rule

Use the sine rule to find the labeled missing side in these triangles.

(9) The diagram shows an areal mast.

Billy measures the angle of elevation to the top from X, it is 32° .

He then walks 20 m towards the tower (Y) and measures the angle of elevation now to be 50° .

- (a) use basic angle rules to calculate the angles XYZ and XZY
- (b) use the sine rule to calculate the side YZ
- (c) hence use basic trigonometry to calculate the height of the mast OZ

(10) The diagram shows three reefs A, B and C.

Distance BC is 17 km and distance AC is 22 km; C is due East of A.

B is on a bearing of 043° from A.

- (a) explain why angle x is 47° and angle y is 137° ?
- (b) calculate the angle marked z
- (c) what is the bearing of C from B?

GCSE-AS Mathematics Bridging Unit

Trigonometry (Non-Right Angled Triangles) - The Cosine Rule

TRIGONOMETRY NON-RIGHT ANOLON TRIANGLES

THE COSINE RULE

The cosine rule is used to calculate missing sides (or angles) in non-right angled bringles like the one shown:

The cosine rule should be used when you can't use the sine rule.

This could be when you know two sides and the included angle of when you know all three sides but no angles.

The cosine rule states that :

 $a^2 = b^2 + c^2 - 2bc \cos A$

Note

- side a at fort 3 same letter fort
 angle A at back) and back
- · lengths back present in middle.

A gain, other symmetric formula can be generated quickly by swapping letters in a systematic way (just ensure chaf the abare points are adhered 60).

a2= b2+c2 - 2 bc cos +	}
b2 = a2 + c2 - 2ac cos (>
$c^2 = a^2 + b^2 - 2ab \cos C$	-

TRIGONOMETRY NON-RIGHT ANGLES TRIANGLES

THE COSINE RULE

EXAMPLE

Find the knoth of the Calculate the largest angle third side of a triangle in a triangle with sides with sides 9 cm and 7 cm of 4 cm, 5 cm and 8 cm. and an included angle of 135° as shown. 6 c

The appropriate formis :

a2 - 62 + c2 - 260005A a2, 92 + 72- 2×9×7× cos 135

a2 = 130 - 126 cos 135

a== 219.1

a = 14.8 cm

EXAMPLE_

Label up as shown (or otherwise!)

The appropriate form is:

$$a^{1} = b^{1} + c^{2} - 2 b \cos A$$

$$a^{-} = b + c - Lbccos i$$

82= 52+42-2×5×4×corr

$$L+0\cos A = 41-64$$

$$L+0\cos A = -23$$

$$\cos A = -\frac{23}{40}$$

$$A = \cos^{-1}(-\frac{23}{40})$$

A= 125°

Trigonometry (Non-Right Angled Triangles) - The Cosine Rule

Exercise B: The Cosine Rule

The cosine rule can be used to find missing angles and sides in non-right angled triangles.

Use the cosine rule if you do not have an angle and the side opposite it.

The cosine rule is given in the formula book and is as follows:

 $c² = a² + b² - 2ab \cos C$ $a² = b² + c² - 2bc \cos A$ $b² = a² + c² - 2ac \cos B$

(Only one of form is given in the formula book – swap letters for others!).

The triangle is labelled up in the usual way:

Note: other letters may be used, the structure of the formula is the same.

Use the **cosine rule** to find all the **missing side** in these triangles:

Trigonometry (Non-Right Angled Triangles) - The Cosine Rule

Exercise B: The Cosine Rule

(9) Teams A and B start from a lodge L.

Team A walks 10 miles on a bearing of 340° and team B walks 15 miles on a bearing of 057°.

- (a) explain why the marked angle is 77° ?
- (b) calculate the distance between the teams after the walk
- (c) what is the bearing of team A from Team B?

(10) A step ladder makes an isosceles triangle as shown:

The length of the ladder is 2 m.

The feet are placed 1 m apart.

- (a) use the cosine rule to calculate the angle at the apex A
- (b) now split the triangle into two right-angled triangles and calculate the angle this way to verify you get the same result!

Trigonometry (Non-Right Angled Triangles) - The Area Formula

TRIGONOMETRY NON-RIGHT ANGLES TRIANGLES

THE AREA FORMULA

The area of this briangle

can be found using the formula:

this also yields two other symmetric formulae

$$A = \frac{1}{2} \operatorname{acsin} B$$
$$A = \frac{1}{2} \operatorname{bcsin} A$$

Note if the argles had been marked $\mathcal{P}_{\mathcal{R}}$ and \mathcal{R} with sides p,q and r the following formulae could be written

TRIGONOMETRY NON-RIGHT ANGLES TRIANGLES

THE AREA FORMULA

A triangle ABC has sides BZ= 6cm, AC=7cm and an angle C = 30°.

Calculate the area of this triangle.

a= 6 b=7 C=30°

 $A = \frac{1}{2}absinC$

 $A = \frac{1}{2} \times 6 \times 7 \times \sin 30^{\circ}$

A= 10.5 cm2

This triangle has an area of 9.85 cm².

EXAMPLE 2

Find the length of the side labelled p.

Start by labelling up sides

Required formula

p=? g=5 R=100°

A= = pgsinR

substituting $9.85 = \frac{1}{2} p \times 5 \times sin 100$

 $p=\frac{9.85\times2}{5\times\sin 100}=4.0$

TRIGONOMETRY NON-RIGHT ANGLES TRIANGLES

THE AREA FORMULA

EXAMPLE 3

Given this tragle

7 cm/ Area = 36 cm²

Calculate the size of the included angle

Start by labelling op the sides

Required formula

substituting values

$$36 = \frac{1}{2} \times 7 \times 12 \times \sin C$$

$$\sin C = \frac{36 \times 2}{7 \times 12}$$

$$C = \sin^{-1} \left(\frac{36 \times 2}{7 \times 12} \right)$$

C= 59°

Trigonometry (Non-Right Angled Triangles) - The Area Formula

Exercise C: The Area Formula

The area of any triangle can be found using the area formula:

Area = $\frac{1}{2}ab\sin C$ Area = $\frac{1}{2}bc\sin A$ Area = $\frac{1}{2}ac\sin B$

You need two sides and the included angle.

Change between the forms by swapping letters.

The triangle is labelled up in the usual way:

Note: other letters may be used, the structure of the formula is the same.

Calculate the **areas** in the following triangles:

Trigonometry (Non-Right Angled Triangles) - The Area Formula

Exercise C: The Area Formula

Find the **area** of this triangle (you will need to **find** an **angle** first!).

Find the **area** of this triangle (you will need to **find** another **side** first!).

(6)

(5)

Trigonometry (Non-Right Angled Triangles) - Mixed Problems

Exercise D: Mixed Problems

Solving a triangle means finding all missing sides and angles.

Solve the triangles in questions 1-3.

(2)

(3)

THE SIME RULEExercise A(i)
$$\frac{\sin c}{c} = \frac{9\pi}{A}$$
(i) $\frac{\sin X}{c} = \frac{\sin 2}{3}$ $\frac{\sin c}{c} = \frac{9\pi}{8}$ (i) $\frac{\sin X}{2} = \frac{\sin 2}{3}$ $\frac{\sin c}{5} = \frac{5\pi 35}{8}$ $\frac{\sin X}{75} = \frac{5\pi 112}{12}$ $\sin c = \frac{5\pi 35}{8}$ $\frac{5\pi X}{75} = \frac{5\pi 112}{12}$ $\sin c = \frac{5\pi 35}{8} = 0.6037...$ $\sin X = \frac{7.5\sin 112}{12} = 0.5794...$ $C = 5\pi^{-1}(0.6037...)$ $X = 55\pi^{-1}(0.57944...)$ $C = 37.1^{\circ}$ $X = 35.4^{\circ}$ $B = 180^{\circ} - 75^{\circ} - 37.1^{\circ} = 67.9^{\circ}$ $Y = 180^{\circ} - 112^{\circ} - 35.4^{\circ} = 32.6^{\circ}$ (ii) $\frac{\sin f}{7} = \frac{\sin c}{7}$ $X = 35.4^{\circ}$ $B = 180^{\circ} - 75^{\circ} - 37.1^{\circ} = 67.9^{\circ}$ $Y = 180^{\circ} - 112^{\circ} - 35.4^{\circ} = 32.6^{\circ}$ (iii) $\frac{\sin f}{7} = \frac{\sin c}{7}$ $X = 35.4^{\circ}$ $B = 180^{\circ} - 75^{\circ} - 37.1^{\circ} = 67.9^{\circ}$ $Y = 180^{\circ} - 112^{\circ} - 35.4^{\circ} = 32.6^{\circ}$ (iii) $\frac{\sin f}{7} = \frac{\sin c}{7}$ $X = 35.4^{\circ}$ $B = 180^{\circ} - 75^{\circ} - 37.1^{\circ} = 67.9^{\circ}$ $Y = 180^{\circ} - 112^{\circ} - 35.4^{\circ} = 32.6^{\circ}$ (iii) $\frac{\sin f}{7} = \frac{\sin c}{7.4}$ $\frac{\sin 4}{7} = \frac{5i - 62}{7.4}$ $Sin f = \frac{9.2 \sin 50}{9.4^{\circ} - 3.4}$ $Sin A = \frac{23.5^{\circ}}{9.5}$ $Sin f = \frac{10}{5in 8}$ $\frac{x}{5in 7} = \frac{7}{5in 7}$ $a = 12.9^{\circ}$ $x = \frac{75in 460}{5in 75}$ $a = 12.9^{\circ}$ $x = \frac{75in 460}{5in 75}$ $a = 12.9^{\circ}$ $x = 4.7cm$

$$\frac{\text{THE SINE RULE}}{\text{SinC} = \frac{b}{5inS}}$$

$$\frac{c}{5inC} = \frac{b}{5inS}$$

$$\frac{c}{5inC} = \frac{15}{5inS}$$

$$\frac{c}{5inK} = \frac{15}{5inNb}$$

$$\frac{c}{5inK} = \frac{15}{5inNb}$$

$$\frac{c}{5inK} = \frac{15}{5inNb}$$

$$\frac{b}{5nK} = \frac{c}{5inK}$$

$$\frac{b}{5inK} = \frac{c}{5inK}$$

$$\frac{c}{5inK} = \frac{c}{$$

$$\frac{\text{TME } (\cos NE \ R \cup LE}{(1)} = q^{2} = 6^{2} + g^{2} - 2 \times 6 \times 8 \times \cos 51}$$

$$q^{2} = 39.6$$

$$q = \sqrt{39.6} = 6.3 \text{ cm}$$

$$(3) = x^{2} = 5^{2} + 4^{2} - 2 \times 5 \times 4 \cos 123}$$

$$x^{2} = 62.8$$

$$x = \sqrt{62.8} = 7.9 \text{ cm}$$

$$(5) = a^{2} = b^{2} + c^{2} - 2b\cos A$$

$$5.8^{2} = 4.5^{2} + 6^{2} - 2 \times 4.5 \times 6\cos A$$

$$5.8^{2} = 4.5^{2} + 6^{2} - 2 \times 4.5 \times 6\cos A$$

$$54\cos A = 22.61$$

$$\cos A = \frac{22.61}{54} = 65^{2}$$

$$(7) = x^{2} = y^{2} + 2^{2} - 2y^{2}\cos X$$

$$12^{2} = 5^{2} + 9^{2} - 2x5 \times 9\cos X$$

$$144 = 999 - 90\cos X$$

$$144 = 999 - 90\cos X$$

$$90\cos X = -55$$

$$\cos X = -55$$

$$\cos X = -55$$

$$\cos X = \cos^{-1}(\frac{-55}{80}) = 133^{0}$$

$$\frac{G \times G \times C \times S \in B}{C^{2}}$$

$$(2) \quad C^{2} = 12^{2} + 9 \cdot 5^{2} - 2 \times 12 \times 9 \cdot 5 \cos 80$$

$$C^{2} = 194 \cdot 3$$

$$C = \sqrt{194} \cdot 3^{2} = 14 \cdot 0 \text{ cm}$$

$$C = \sqrt{111} \cdot 9$$

$$T^{2} = 9^{2} + 9^{2} - 2 \times 9 \times 9 \cos 72$$

$$T^{2} = 111 \cdot 9$$

$$T = \sqrt{111} \cdot 9^{2} = 10 \cdot 6 \text{ cm}$$

$$(3) \quad b^{2} = a^{2} + c^{2} - 2 \times 6 \times 8 \cos 8$$

$$9^{2} = 6^{2} + 8^{2} - 2 \times 6 \times 8 \cos 8$$

$$9^{6} \cos 8 = 19$$

$$Cos \quad B = 19$$

$$Cos \quad Cos \quad B$$

$$9^{6} \cos 8 = 19$$

$$Cos \quad Cos \quad Cos \quad B$$

$$9^{6} \cos 8 = 19$$

$$Cos \quad Cos \quad$$

THECOSINE RULE

A

(9)

$$Sin B = 0.608...$$

 $B = Sin^{-1}(0.606...) = 38^{\circ}$

SinB = LOSin77

Find angle B (other possible) Sin B = sin 77

> Sc Bearing A from B = 180+57+38=275"

(10)

15~

 $A = (\cos^{-1}\left(\frac{2}{8}\right)$

(b)
$$(H71^{1})^{1}$$

 $2 \times (A05)^{1}$
 $5 = 0.5^{1}$
 $0.5 \times 1 = 0.15^{1}$
 14.5°
 $(011)^{1}$
 $apex = 2x = 2x + 4.5 = 29^{\circ}$

Area = 1x9.4x lox sin35 = 27.0 cm

other ways!!

MIXEN	EXENCISED
1) 1000 B	92= 72+ 102-2×7×10× 60558
58° C	9 ² = 74.8 - 9 = 8.65 cm
Fen	$\frac{\sin B}{b} = \frac{\sin A}{a}$
	$\frac{\sin B}{7} = \frac{\sin 58}{8.65} \qquad \sin B = \frac{7 \sin 58}{8.65} = 0.686$
	$U = sia^{-1}(0.686) = 43^{\circ}$
	C= 186-58-43 = 79°
$\begin{array}{c} (2) \underline{SinB} = \underline{SinC} \\ \underline{b} \underline{C} \end{array}$	A = 65+ 180-65-55=60'
$\frac{SIAB}{10} = \frac{SIA65}{11}$	$\frac{9}{1} = \frac{2}{1}$
$\sin \beta = \frac{10 \sin 65}{11} = 0.82.$	$\frac{q}{1} = \frac{11}{1}$
B= sin -1 (0.82) = 55	Sinko Sinko
unit	9= <u>11 sin 60</u> 9= 10.5 cm
(3) q ² = p ² +r ² -2pr cus cp	p2 = r2+ 22 - 2rg cos P
92 = 72+ 122- 2×7×12	$cos Q = 12^{2} = 7^{2} + 9^{2} - 2 \times 7 \times 9 \cos P$
81 = 193 - 168 (0) Q	144 = 130 - 126 cos P
$168\cos Q = 112$	$126\cos l = -14$
$\cos Q = 112$ 168	$\cos P = -\frac{14}{126}$
$Q = \omega_5^{-1} \left(\frac{112}{168} \right) Q = 1$	48 $l = cos^{-1} \left(\frac{-14}{126} \right) l = 96^{-1}$
R= 180-48-96	R = 36°