Surds and rationalising the denominator

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

$$\sqrt{50} = \sqrt{25 \times 2}$$
1Choose two numbers that are
factors of 50. One of the factors
must be a square number $= \sqrt{25} \times \sqrt{2}$ 2Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ $= 5\sqrt{2}$ 3Use $\sqrt{25} = 5$

Example 2 Simplify $\sqrt{147} - 2\sqrt{12}$

$\sqrt{147} - 2\sqrt{12}$ $= \sqrt{49 \times 3} - 2\sqrt{4 \times 3}$	1 Simplify $\sqrt{147}$ and $2\sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number
$=\sqrt{49}\times\sqrt{3}-2\sqrt{4}\times\sqrt{3}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
$=7\times\sqrt{3}-2\times2\times\sqrt{3}$	3 Use $\sqrt{49} = 7$ and $\sqrt{4} = 2$
$=7\sqrt{3}-4\sqrt{3}$	
$=3\sqrt{3}$	4 Collect like terms

Example 3 Simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$ $= \sqrt{49} - \sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7} - \sqrt{4}$ = 7 - 2 = 51 Expand the brackets. A common mistake here is to write $(\sqrt{7})^2 = 49$ 2 Collect like terms: $-\sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7}$ $= -\sqrt{7}\sqrt{2} + \sqrt{7}\sqrt{2} = 0$

Example 4 Rationalise
$$\frac{1}{\sqrt{3}}$$

$$\begin{vmatrix}
\frac{1}{\sqrt{3}} &= \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
= \frac{1 \times \sqrt{3}}{\sqrt{9}} \\
= \frac{\sqrt{3}}{3}
\end{vmatrix}$$
1 Multiply the numerator and denominator by $\sqrt{3}$
2 Use $\sqrt{9} = 3$

Example 5 Rationalise and simplify
$$\frac{\sqrt{2}}{\sqrt{12}}$$

$$\frac{\sqrt{2}}{\sqrt{12}} = \frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$$

$$= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$$
1 Multiply the numerator and denominator by $\sqrt{12}$
2 Simplify $\sqrt{12}$ in the numerator. Choose two numbers that are factors of 12. One of the factors must be a square number

$$= \frac{2\sqrt{2}\sqrt{3}}{12}$$
3 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
4 Use $\sqrt{4} = 2$
5 Simplify the fraction:

$$\frac{2}{12}$$
 simplifies to $\frac{1}{6}$

Example 6	Rationalise and simplify $\frac{3}{2+\sqrt{5}}$		
	$\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	1	Multiply the numerator and denominator by $2 - \sqrt{5}$
	$=\frac{3\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}$	2	Expand the brackets
	$=\frac{6-3\sqrt{5}}{4+2\sqrt{5}-2\sqrt{5}-5}$	3	Simplify the fraction
	$=\frac{6-3\sqrt{5}}{-1}$ $=3\sqrt{5}-6$	4	Divide the numerator by -1 Remember to change the sign of all terms when dividing by -1

Practice

2

1	Sim	plify.			Hint
	a	$\sqrt{45}$	b	$\sqrt{125}$	One of the two
	c	$\sqrt{48}$	d	$\sqrt{175}$	numbers you
	e	$\sqrt{300}$	f	$\sqrt{28}$	must be a square
	g	$\sqrt{72}$	h	$\sqrt{162}$	number.

Sin	nplify.			Wa
a	$\sqrt{72} + \sqrt{162}$	b	$\sqrt{45}-2\sqrt{5}$	Ch
c	$\sqrt{50} - \sqrt{8}$	d	$\sqrt{75} - \sqrt{48}$	cho
e	$2\sqrt{28} + \sqrt{28}$	f	$2\sqrt{12} - \sqrt{12} + \sqrt{27}$	the

eck you have osen the highest are number at start.

3	Expand	and	simp	lify.	
	,	_	_	_	a,

a $(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$ c $(4-\sqrt{5})(\sqrt{45}+2)$

b $(3+\sqrt{3})(5-\sqrt{12})$ **d** $(5+\sqrt{2})(6-\sqrt{8})$

4 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{5}}$$
b $\frac{1}{\sqrt{11}}$ c $\frac{2}{\sqrt{7}}$ d $\frac{2}{\sqrt{8}}$ e $\frac{2}{\sqrt{2}}$ f $\frac{5}{\sqrt{5}}$ g $\frac{\sqrt{8}}{\sqrt{24}}$ h $\frac{\sqrt{5}}{\sqrt{45}}$

5 Rationalise and simplify.

a
$$\frac{1}{3-\sqrt{5}}$$
 b $\frac{2}{4+\sqrt{3}}$ **c** $\frac{6}{5-\sqrt{2}}$

Extend

- 6 Expand and simplify $(\sqrt{x} + \sqrt{y})(\sqrt{x} \sqrt{y})$
- 7 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{9}-\sqrt{8}}$$
 b $\frac{1}{\sqrt{x}-\sqrt{y}}$

Answers

1	a	3√5	b	5√5		
	с	4√3	d	5√7		
	e	10√3	f	2√7		
	g	6√2	h	9√2		
_		- F		E		
2	a	15√2 - <i>F</i>	b	√5 <i>E</i>		
	c	3√2	d	√3		
	e	6√7	f	5√3		
3	я	-1	h	93		
U	u C	10./5_7	d	26-4.2		
	t	1043-7	u	20-492		
4		$\sqrt{5}$	L	$\sqrt{11}$		
4	a	5	D	11		
	с	2√7	d	$\sqrt{2}$		
	_	7	£	2 /F		
	e	√2 万	I	√5 1		
	g	$\frac{\sqrt{3}}{3}$	h	$\frac{1}{2}$		
		5		5		
5	0	$3 + \sqrt{5}$	h	$2(4-\sqrt{3})$	0	$6(5+\sqrt{2})$
3	a	4	U	13	C	23
6	r –	v				
U	л	y				
_				$\sqrt{x} + \sqrt{y}$		
7	a	$3+2\sqrt{2}$	b	$\frac{x-y}{x-y}$		

