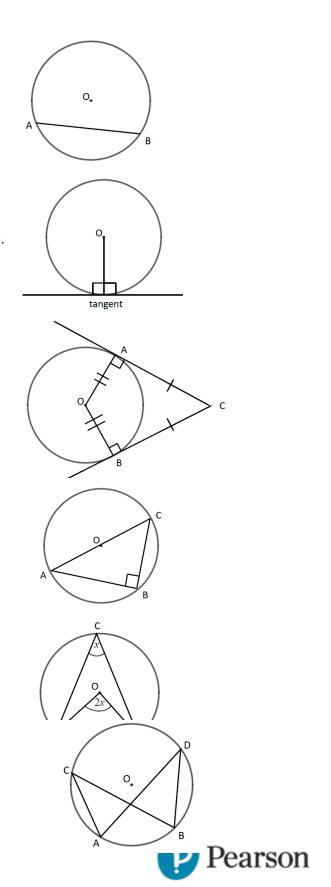
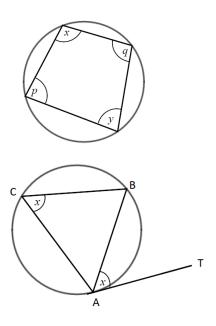
### **Circle theorems**


#### A LEVEL LINKS

Scheme of work: 2b. Circles - equation of a circle, geometric problems on a grid

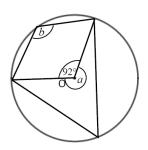
### **Key points**

- A chord is a straight line joining two points on the circumference of a circle. So AB is a chord.
- A tangent is a straight line that touches the circumference of a circle at only one point. The angle between a tangent and the radius is 90°.


- Two tangents on a circle that meet at a point outside the circle are equal in length. So AC = BC.
- The angle in a semicircle is a right angle. So angle  $ABC = 90^{\circ}$ .
- When two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference.
   So angle AOB = 2 × angle ACB.
- Angles subtended by the same arc at the circumference are equal. This means that angles in the same segment are equal. So angle ACB = angle ADB and

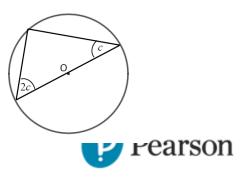





angle CAD = angle CBD.

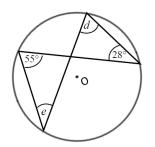
- A cyclic quadrilateral is a quadrilateral with all four vertices on the circumference of a circle. Opposite angles in a cyclic quadrilateral total 180°. So x + y = 180° and p + q = 180°.
- The angle between a tangent and chord is equal to the angle in the alternate segment, this is known as the alternate segment theorem. So angle BAT = angle ACB.




### Examples

Example 1 Work out the size of each angle marked with a letter. Give reasons for your answers.

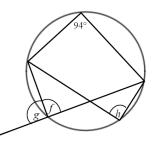



| Angle $a = 360^{\circ} - 92^{\circ}$<br>= 268°<br>as the angles in a full turn total 360°.                                                                                          | 1 | The angles in a full turn total 360°.                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------|
| Angle $b = 268^{\circ} \div 2$<br>= 134°<br>as when two angles are subtended by the<br>same arc, the angle at the centre of a<br>circle is twice the angle at the<br>circumference. | 2 | Angles <i>a</i> and <i>b</i> are subtended by the same arc, so angle <i>b</i> is half of angle <i>a</i> . |

**Example 2** Work out the size of the angles in the triangle. Give reasons for your answers.



| Angles are 90°, $2c$ and $c$ .                                                                                                                                | 1 The angle in a semicircle is a right angle.                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| $90^{\circ} + 2c + c = 180^{\circ}$<br>$90^{\circ} + 3c = 180^{\circ}$<br>$3c = 90^{\circ}$<br>$c = 30^{\circ}$<br>$2c = 60^{\circ}$                          | <ul> <li>2 Angles in a triangle total 180°.</li> <li>3 Simplify and solve the equation.</li> </ul> |
| The angles are $30^{\circ}$ , $60^{\circ}$ and $90^{\circ}$ as the angle in a semi-circle is a right angle and the angles in a triangle total $180^{\circ}$ . |                                                                                                    |

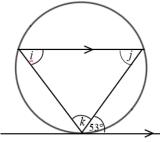

**Example 3** Work out the size of each angle marked with a letter. Give reasons for your answers.



Angle  $d = 55^{\circ}$  as angles subtended by the same arc are equal.

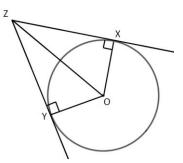
Angle  $e = 28^{\circ}$  as angles subtended by the same arc are equal.

- 1 Angles subtended by the same arc are equal so angle  $55^{\circ}$  and angle *d* are equal.
- 2 Angles subtended by the same arc are equal so angle  $28^{\circ}$  and angle e are equal.
- **Example 4** Work out the size of each angle marked with a letter. Give reasons for your answers.




| Angle $f = 180^\circ - 94^\circ$<br>= 86°<br>as opposite angles in a cyclic<br>quadrilateral total 180°. | 1 Opposite angles in a cyclic quadrilateral total $180^\circ$ so angle $94^\circ$ and angle <i>f</i> total $180^\circ$ . |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                                                          | (continued on next page)                                                                                                 |




Example 5

| Angle $g = 180^{\circ} - 86^{\circ}$<br>= 84°<br>as angles on a straight line total 180°.  | 2 Angles on a straight line total $180^{\circ}$<br>so angle <i>f</i> and angle <i>g</i> total $180^{\circ}$ . |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Angle $h = \text{angle } f = 86^{\circ}$ as angles<br>subtended by the same arc are equal. | 3 Angles subtended by the same arc are equal so angle <i>f</i> and angle <i>h</i> are equal.                  |
| Work out the size of each angle marked v<br>Give reasons for your answers.                 | with a letter.                                                                                                |



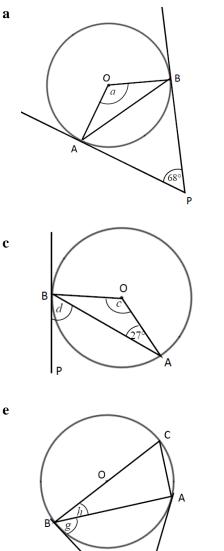
| Angle $i = 53^{\circ}$ because of the alternate segment theorem.                            | 1 | The angle between a tangent and<br>chord is equal to the angle in the<br>alternate segment.                       |
|---------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------|
| Angle $j = 53^{\circ}$ because it is the alternate angle to $53^{\circ}$ .                  | 2 | As there are two parallel lines, angle $53^{\circ}$ is equal to angle <i>j</i> because they are alternate angles. |
| Angle $k = 180^\circ - 53^\circ - 53^\circ$<br>= 74°<br>as angles in a triangle total 180°. | 3 | The angles in a triangle total 180°, so $i + j + k = 180^\circ$ .                                                 |

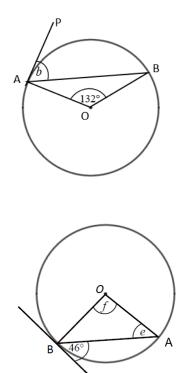
Example 6XZ and YZ are two tangents to a circle with centre O.<br/>Prove that triangles XZO and YZO are congruent.



| Angle $OXZ = 90^{\circ}$ and angle $OYZ = 90^{\circ}$ as the angles in a semicircle are right | For two triangles to be congruent you need to show one of the following. |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| angles.                                                                                       | • All three corresponding sides are equal (SSS).                         |
| OZ is a common line and is the hypotenuse in both triangles.                                  | • Two corresponding sides and the included angle are equal (SAS).        |
| OX = OY as they are radii of the same circle.                                                 | • One side and two corresponding angles are equal (ASA).                 |
| So triangles XZO and YZO are congruent, RHS.                                                  | • A right angle, hypotenuse and a shorter side are equal (RHS).          |




### Practice


1 Work out the size of each angle marked with a letter. Give reasons for your answers.

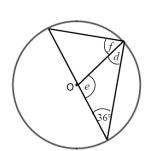
b

d

b

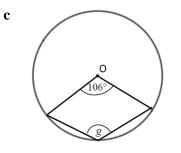





P

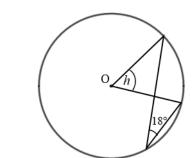
Work out the size of each angle marked with a letter. Give reasons for your answers.

56


a b c c

2

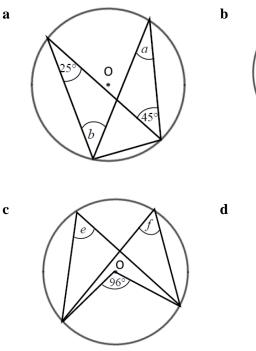


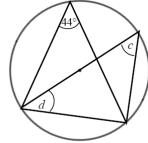



d



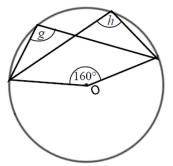
#### Hint


The reflex angle at point O and angle g are subtended by the same arc. So the reflex angle is twice the size of angle g.



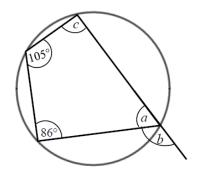

#### Hint

Angle  $18^{\circ}$  and angle *h* are subtended by the same arc.


**3** Work out the size of each angle marked with a letter. Give reasons for your answers.





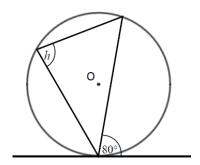

#### Hint

One of the angles is in a semicircle.



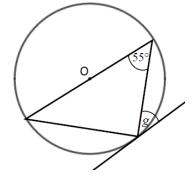


- 4 Work out the size of each angle marked with a letter. Give reasons for your answers.
  - a




#### Hint

с


An exterior angle of a cyclic quadrilateral is equal to the opposite interior angle.

d 88°



d

b



Hint One of the angles is in a semicircle.

### Extend

**5** Prove the alternate segment theorem.

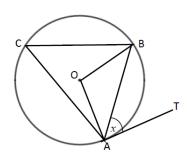


### Answers

- 1 a  $a = 112^\circ$ , angle OAP = angle OBP = 90° and angles in a quadrilateral total 360°.
  - **b**  $b = 66^{\circ}$ , triangle OAB is isosceles, Angle OAP = 90° as AP is tangent to the circle.
  - c  $c = 126^{\circ}$ , triangle OAB is isosceles.  $d = 63^{\circ}$ , Angle OBP = 90° as BP is tangent to the circle.
  - **d**  $e = 44^{\circ}$ , the triangle is isosceles, so angles *e* and angle OBA are equal. The angle OBP = 90° as BP is tangent to the circle.
    - $f = 92^{\circ}$ , the triangle is isosceles.
  - e  $g = 62^{\circ}$ , triangle ABP is isosceles as AP and BP are both tangents to the circle.  $h = 28^{\circ}$ , the angle OBP = 90°.
- 2 **a**  $a = 130^{\circ}$ , angles in a full turn total 360°.  $b = 65^{\circ}$ , the angle at the centre of a circle is twice the angle at the circumference.  $c = 115^{\circ}$ , opposite angles in a cyclic quadrilateral total 180°.
  - **b**  $d = 36^{\circ}$ , isosceles triangle.  $e = 108^{\circ}$ , angles in a triangle total 180°.  $f = 54^{\circ}$ , angle in a semicircle is 90°.
  - c  $g = 127^{\circ}$ , angles at a full turn total 360°, the angle at the centre of a circle is twice the angle at the circumference.
  - **d**  $h = 36^{\circ}$ , the angle at the centre of a circle is twice the angle at the circumference.
- 3 **a**  $a = 25^{\circ}$ , angles in the same segment are equal.  $b = 45^{\circ}$ , angles in the same segment are equal.
  - **b**  $c = 44^{\circ}$ , angles in the same segment are equal.  $d = 46^{\circ}$ , the angle in a semicircle is 90° and the angles in a triangle total 180°.
  - c  $e = 48^\circ$ , the angle at the centre of a circle is twice the angle at the circumference.  $f = 48^\circ$ , angles in the same segment are equal.
  - **d**  $g = 100^{\circ}$ , angles at a full turn total 360°, the angle at the centre of a circle is twice the angle at the circumference.
    - $h = 100^{\circ}$ , angles in the same segment are equal.
- 4 **a**  $a = 75^{\circ}$ , opposite angles in a cyclic quadrilateral total 180°.  $b = 105^{\circ}$ , angles on a straight line total 180°.  $c = 94^{\circ}$ , opposite angles in a cyclic quadrilateral total 180°.
  - **b**  $d = 92^\circ$ , opposite angles in a cyclic quadrilateral total 180°.  $e = 88^\circ$ , angles on a straight line total 180°.  $f = 92^\circ$ , angles in the same segment are equal.
  - c  $h = 80^{\circ}$ , alternate segment theorem.
  - **d**  $g = 35^{\circ}$ , alternate segment theorem and the angle in a semicircle is 90°.



5 Angle BAT = x.


Angle OAB =  $90^{\circ} - x$  because the angle between the tangent and the radius is  $90^{\circ}$ .

OA = OB because radii are equal.

Angle OAB = angle OBA because the base of isosceles triangles are equal.

Angle AOB =  $180^{\circ} - (90^{\circ} - x) - (90^{\circ} - x) = 2x$ because angles in a triangle total  $180^{\circ}$ .

Angle ACB =  $2x \div 2 = x$  because the angle at the centre is twice the angle at the circumference.



