

Rearranging equations

A LEVEL LINKS

Scheme of work: 6a. Definition, differentiating polynomials, second derivatives

Textbook: Pure Year 1, 12.1 Gradients of curves

Key points

- To change the subject of a formula, get the terms containing the subject on one side and everything else on the other side.
- You may need to factorise the terms containing the new subject.

Examples

Example 1 Make *t* the subject of the formula v = u + at.

v = u + at $v - u = at$	1 Get the terms containing <i>t</i> on one side and everything else on the other side.
$t = \frac{v - u}{a}$	2 Divide throughout by a.

Example 2 Make *t* the subject of the formula $r = 2t - \pi t$.

$r = 2t - \pi t$	1 All the terms containing <i>t</i> are already on one side and everything else is on the other side.
$r = t(2 - \pi)$	2 Factorise as <i>t</i> is a common factor.
$t = \frac{r}{2 - \pi}$	3 Divide throughout by $2 - \pi$.

Example 3 Make *t* the subject of the formula $\frac{t+r}{5} = \frac{3t}{2}$.

$\frac{t+r}{5} = \frac{3t}{2}$	1 Remove the fractions first by multiplying throughout by 10.
2t + 2r = 15t $2r = 13t$	2 Get the terms containing <i>t</i> on one side and everything else on the other side and simplify.
$t = \frac{2r}{13}$	3 Divide throughout by 13.

Make t the subject of the formula $r = \frac{3t+5}{t-1}$. Example 4

$$r = \frac{3t+5}{t-1}$$
$$r(t-1) = 3t+3$$

$$rt - r = 3t + 5$$

$$rt - 3t = 5 + t$$

$$t(r-3) = 5 + i$$

$$t = \frac{5+r}{r-3}$$

- 1 Remove the fraction first by multiplying throughout by t - 1.
- **2** Expand the brackets.
- 3 Get the terms containing t on one side and everything else on the other
- Factorise the LHS as t is a common factor.
- 5 Divide throughout by r 3.

Practice

Change the subject of each formula to the letter given in the brackets.

1
$$C = \pi d$$
 [d]

2
$$P = 2l + 2w$$
 [w]

$$3 D = \frac{S}{T} [T]$$

$$4 p = \frac{q-r}{t} [t]$$

4
$$p = \frac{q-r}{t}$$
 [t] **5** $u = at - \frac{1}{2}t$ [t] **6** $V = ax + 4x$ [x]

6
$$V = ax + 4x [x]$$

7
$$\frac{y-7x}{2} = \frac{7-2y}{3}$$
 [y] 8 $x = \frac{2a-1}{3-a}$ [a] 9 $x = \frac{b-c}{d}$ [d]

8
$$x = \frac{2a-1}{3-a}$$
 [a]

$$9 x = \frac{b-c}{d} [d]$$

10
$$h = \frac{7g - 9}{2 + g}$$
 [g]

11
$$e(9+x)=2e+1$$
 [e]

11
$$e(9+x) = 2e+1$$
 [e] **12** $y = \frac{2x+3}{4-x}$ [x]

Make *r* the subject of the following formulae.

$$\mathbf{a} \qquad A = \pi r^2$$

$$\mathbf{b} \qquad V = \frac{4}{3}\pi r^3$$

$$P = \pi r + 2$$

a
$$A = \pi r^2$$
 b $V = \frac{4}{3}\pi r^3$ **c** $P = \pi r + 2r$ **d** $V = \frac{2}{3}\pi r^2 h$

14 Make *x* the subject of the following formulae.

$$\mathbf{a} \qquad \frac{xy}{z} = \frac{ab}{cd}$$

$$\mathbf{b} \qquad \frac{4\pi cx}{d} = \frac{3z}{py^2}$$

- 15 Make $\sin B$ the subject of the formula $\frac{a}{\sin A} = \frac{b}{\sin B}$
- Make cos B the subject of the formula $b^2 = a^2 + c^2 2ac \cos B$.

Extend

17 Make *x* the subject of the following equations.

$$\mathbf{a} \qquad \frac{p}{q}(sx+t) = x-1$$

$$\mathbf{b} \qquad \frac{p}{q}(ax+2y) = \frac{3p}{q^2}(x-y)$$

Answers

1
$$d = \frac{C}{\pi}$$

$$2 w = \frac{P - 2l}{2} 3 T = \frac{S}{D}$$

$$T = \frac{S}{D}$$

$$4 t = \frac{q - r}{p}$$

$$5 t = \frac{2u}{2a-1}$$

5
$$t = \frac{2u}{2a-1}$$
 6 $x = \frac{V}{a+4}$

7
$$y = 2 + 3x$$

$$8 \qquad a = \frac{3x+3}{x+2}$$

8
$$a = \frac{3x+1}{x+2}$$
 9 $d = \frac{b-c}{x}$

10
$$g = \frac{2h+9}{7-h}$$

$$11 \qquad e = \frac{1}{x+7}$$

11
$$e = \frac{1}{x+7}$$
 12 $x = \frac{4y-3}{2+y}$

13 a
$$r = \sqrt{\frac{A}{\pi}}$$
 b $r = \sqrt[3]{\frac{3V}{4\pi}}$

$$\mathbf{b} \qquad r = \sqrt[3]{\frac{3V}{4\pi}}$$

$$\mathbf{c} \qquad r = \frac{P}{\pi + 2}$$

$$\mathbf{c} \qquad r = \frac{P}{\pi + 2} \qquad \qquad \mathbf{d} \qquad r = \sqrt{\frac{3V}{2\pi h}}$$

14 a
$$x = \frac{abz}{cdy}$$

14 a
$$x = \frac{abz}{cdy}$$
 b $x = \frac{3dz}{4\pi cpy^2}$

$$15 \quad \sin B = \frac{b \sin A}{a}$$

16
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

17 a
$$x = \frac{q+pt}{q-ps}$$

17 **a**
$$x = \frac{q+pt}{q-ps}$$
 b $x = \frac{3py+2pqy}{3p-apq} = \frac{y(3+2q)}{3-aq}$